GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Language
  • 1
    Online Resource
    Online Resource
    London :Elsevier Health Sciences,
    Keywords: Respiratory Physiological Phenomena. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (180 pages)
    Edition: 2nd ed.
    ISBN: 9780702050725
    Series Statement: Systems of the Body Series
    DDC: 611.2
    Language: English
    Note: Front cover -- The respiratory system: Basic science and clinical conditions -- Copyright page -- Preface -- Acknowledgements -- Contents -- CHAPTER 1 INTRODUCTION -- Introduction -- What is respiration? -- The need for respiration -- Diffusion in respiration and the circulation -- Timing in the circulation and respiration -- Basic science of respiration -- Drugs -- CHAPTER 2 STRUCTURE OF THE RESPIRATORY SYSTEM, RELATED TO FUNCTION -- Introduction -- The upper airways -- The intrathoracic airways -- Blood vessels -- Pulmonary hypertension -- The lymphatics -- The nerves -- Gross structure of the respiratory system -- Pleurisy -- The diaphragm and chest wall -- How breathing is brought about -- Embryology -- Air-conditioning -- Metabolic activity -- Metabolism of circulating biologically active substances -- Non-respiratory functions -- CHAPTER 3 ELASTIC PROPERTIES OF THE RESPIRATORY SYSTEM -- Introduction -- Intrapleural pressure (P[sub(pl)]) -- Static lung compliance (C[sub(L)]) -- The effect of disease -- The physical basis of lung compliance -- CHAPTER 4 AIRFLOW IN THE RESPIRATORY SYSTEM -- Introduction -- How airflow is brought about -- The nature of airflow -- The major determinant of flow - radius -- Airways resistance and obstructive pulmonary disease -- The clinical situation -- Sites of airways resistance -- Asthma and airways smooth muscle -- Bronchomotor tone -- Pharmacological treatment of asthma -- Clinical definitions -- Bronchitis and mucus -- Emphysema and radial traction -- Intrapleural pressure and cough -- Clinical tests for changes in resistance -- Work of breathing -- CHAPTER 5 VENTILATION OF THE RESPIRATORY SYSTEM: THE IMPORTANCE OF ITS LACK OF UNIFORMITY IN DISEASE -- Introduction -- Spirometric abnormalities in disease -- Uneven distribution -- Dead space -- Alveolar dead space in disease -- The Bohr equation. , Factors affecting physiological dead space -- Alveolar ventilation and respiratory exchange -- The alveolar gas equation -- Distribution of inspired gas -- Other factors in. uencing distribution -- CHAPTER 6 GAS EXCHANGE BETWEEN AIR AND BLOOD: DIFFUSION -- The path from air to tissue -- Lung disease and diffusion -- Fick's Law of Diffusion -- Measuring transfer factor -- Treating diffusion difficulties -- Carbon dioxide and other gases -- CHAPTER 7 THE PULMONARY CIRCULATION: BRINGING BLOOD AND GAS TOGETHER -- The functions of the pulmonary circulation -- The anatomy of the pulmonary circulation -- Matching ventilation and perfusion -- Distribution of blood flow through the lungs -- Regional differences in ventilation in the lungs -- Ventilation/perfusion matching and its effect on blood O[sub(2)] and CO[sub(2)] content -- Shunt -- CHAPTER 8 CARRIAGE OF GASES BY THE BLOOD AND ACID/BASE BALANCE -- Introduction -- Oxygen transport -- Dissolved oxygen: do we really need Hb and why keep it in red cells? -- Carbon dioxide transport -- Acid-base balance -- CHAPTER 9 CHEMICAL CONTROL OF BREATHING -- Introduction -- Oxygen lack -- Carbon dioxide excess -- CHAPTER 10 NERVOUS CONTROL OF BREATHING -- Introduction -- The rhythm generator -- Pattern of breathing in COPD -- The respiratory 'centres' -- The medullary groups -- Conscious control of breathing -- Respiratory muscle innervation -- Neuromuscular disorders -- Vagal reflexes -- Dyspnoea -- Other reflexes -- CHAPTER 11 LUNG FUNCTION TESTS: MEASURING DISABILITY -- Introduction -- Spirometry -- Flow measurements -- Plethysmography -- Lung mechanics -- Transfer factor (diffusing capacity) -- Blood gases -- Gas washouts -- Exercise testing -- Challenge tests -- Appendix: some basic science -- Glossary -- A -- B -- C -- D -- E -- F -- G -- H -- I -- L -- M -- P -- R -- S -- T -- V -- W -- Index -- A -- B -- C. , D -- E -- F -- G -- H -- I -- K -- L -- M -- N -- O -- P -- R -- S -- T -- U -- V -- W -- X.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Philadelphia :Urban & Fischer Verlag GmbH & Co. KG,
    Keywords: Respiratory organs. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (183 pages)
    Edition: 1st ed.
    ISBN: 9783437173059
    Series Statement: Organsysteme Verstehen Series
    Language: German
    Note: Front Cover -- ORGANSYSTEME VERSTEHEN: Atmungssystem -- Dedication -- ORGANSYSTEME VERSTEHEN: Atmungssystem -- Copyright -- Vorwort zur 2. englischen Auflage -- Danksagung zur 2. englischen Auflage -- Autoren -- Quellennachweis -- Inhaltsverzeichnis -- 1 Einleitung -- 1.1 Einleitung -- 1.2 Was ist Atmung? -- 1.3 Die Notwendigkeit des Atmens -- 1.4 Diffusion in der Atmung und im Blutkreislauf -- 1.5 Zeitlicher Ablauf im Blutkreislauf und in der Atmung -- 1.6 Wissenschaftliche Grundlagen der Atmung -- 1.6.1 Respiratorische Kürzel - die Terminologie des respiratorischen Systems -- 1.7 Medikamente -- 1.7.1 CGS- und SI-Einheiten -- 2 - Funktioneller Aufbau des respiratorischen Systems -- 2.1 Einleitung -- 2.2 Die oberen Atemwege -- 2.2.1 Mund und Nase - Rhinitis, Erkältung und obstruktives Schlafapnoesyndrom -- 2.2.2 Larynx und Intubation -- 2.2.3 Bronchoskopie -- 2.3 Die unteren Atemwege -- 2.3.1 Histologie der Atemwege -- 2.3.2 Bronchitis und der Reid-Index -- 2.3.3 Die respiratorische Zone -- 2.4 Blutgefäße -- 2.5 Pulmonale Hypertonie -- 2.6 Lymphgefäße -- 2.7 Nerven -- 2.8 Makroskopischer Aufbau des Atmungssystems -- 2.9 Pleuritis -- 2.10 Zwerchfell und Thoraxwand -- 2.11 Wie die Atmung zustande kommt -- 2.12 Embryologie -- 2.13 Aufbereitung der Luft -- 2.13.1 Wärme und Wasser -- 2.13.2 Partikel und Dämpfe -- 2.14 Metabolische Aktivität -- 2.15 Metabolismus von zirkulierenden biologisch aktiven Substanzen -- 2.16 Nichtrespiratorische Funktionen -- 2.16.1 Filtration -- 2.16.2 Blutfluidität -- 2.16.3 Blutvolumen -- 2.16.4 Abkühlung -- 2.16.5 Verhalten -- 3 - Elastische Eigenschaften des Atmungssystems -- 3.1 Einleitung -- 3.2 Intrapleuraler Druck (Ppl) -- 3.3 Statische Compliance der Lunge -- 3.4 Krankheitsbedingte Veränderungen -- 3.5 Physikalische Grundlagen der Compliance -- 3.5.1 Elastizität des Lungengewebes. , 3.5.2 Der Flüssigkeitsfilm der Lunge -- 3.5.3 Die Oberfläche von Flüssigkeiten -- 3.5.4 Die Eigenschaften von Blasen -- 3.5.5 Die Eigenschaften des Flüssigkeitsfilms der Alveolen -- 3.5.6 Das Öffnen und Schließen der Alveolen -- 3.5.7 Statische Compliance -- 3.5.8 Dynamische Compliance -- 3.5.9 Thorax-Compliance -- 3.5.10 Gesamt-Compliance -- 3.5.11 Einflussfaktoren der Lungen-Compliance -- 4 - Der Atemfluss im Atmungssystem -- 4.1 Einleitung -- 4.2 Entstehen des Atemflusses -- 4.3 Eigenschaften des Atemflusses -- 4.4 Die wichtigste Determinante der Strömung: Der Radius -- 4.5 Atemwegswiderstand und obstruktive Lungenerkrankung -- 4.6 Klinische Situation -- 4.6.1 Die Unterbrechertechnik -- 4.6.2 Ganzkörperplethysmografie -- 4.7 Lokalisation des Atemwegswiderstands -- 4.8 Asthma und die glatte Muskulatur der Atemwege -- 4.9 Bronchomotorischer Tonus -- 4.10 Die medikamentöse Behandlung von Asthma -- 4.10.1 Bronchodilatatoren - Behandlung in der Frühphase -- 4.10.2 Entzündungshemmer - Behandlung in der Spätphase -- 4.11 Klinische Definitionen -- 4.12 Bronchitis und Schleim -- 4.13 Emphysem und radialer Zug -- 4.14 Intrapleuraler Druck und Husten -- 4.16 Atemarbeit -- 5 - Ventilation des respiratorischen Systems: pathologische Bedeutung einer ungleichmäßigen Ventilation -- 5.1 Einleitung -- 5.2 Spirometrische Befunde bei Lungenkrankheiten -- 5.3 Ungleiche Verteilung -- 5.4 Totraum -- 5.5 Alveolärer Totraum bei Erkrankungen -- 5.6 Bohr-Gleichung -- 5.7 Einflussfaktoren des physiologischen Totraums -- 5.8 Alveoläre Ventilation und respiratorischer Gasaustausch -- 5.9 Alveolargasgleichung -- 5.10 Verteilung der eingeatmeten Luft -- 5.10.1 Unterschiede, die sich aus der Reihenanordnung ergeben -- 5.10.2 Regionale Unterschiede -- 5.11 Andere Faktoren, die sich auf die Verteilung auswirken -- 5.11.1 Alter -- 5.11.2 Tonus der Atemwegsmuskulatur. , 5.11.3 Körperhaltung -- 5.11.4 Pathologische Veränderungen -- 6 - Gasaustausch zwischen Luft und Blut: Diffusion -- 6.1 Der Weg aus der Luft ins Gewebe -- 6.2 Lungenkrankheiten und Diffusion -- 6.3 Ficksches Diffusionsgesetz -- 6.3.1 Innerhalb der Alveolen -- 6.3.2 Luft in die Erythrozyten -- 6.4 Messung des Transferfaktors -- 6.5 Behandlung von Diffusionsproblemen -- 6.6 Kohlendioxid und andere Gase -- 7 - Lungenkreislauf: Wie Blut und Luft zusammengebracht werden -- 7.1 Funktionen des Lungenkreislaufs -- 7.2 Anatomie des Lungenkreislaufs -- 7.2.1 Rechte Ventrikel -- 7.2.2 Blutgefäße der Lunge -- 7.2.3 Bronchialkreislauf -- 7.3 Anpassung von Ventilation und Perfusion -- 7.4 Blutverteilung in der Lunge -- 7.4.1 Schwerkraft -- 7.4.2 Extravasaler Druck -- 7.4.3 Hypoxische pulmonale Vasokonstriktion -- 7.4.4 Innervation der pulmonalen Blutgefäße -- 7.5 Regionale Unterschiede in der pulmonalen Ventilation -- 7.6 Ventilations-Perfusions-Anpassung und ihr Effekt auf den Sauerstoff- und Kohlendioxidgehalt des Bluts -- 7.7 Shunt -- 8 - Gastransport im Blut und Säure-Basen-Haushalt -- 8.1 Einleitung -- 8.2 Sauerstofftransport -- 8.2.1 Hämoglobin (Hb) -- 8.2.2 Verbindung von Sauerstoff und Hämoglobin -- 8.2.3 Eigenschaften der Oxyhämoglobin-Dissoziationskurve -- 8.2.4 Kurvenform -- 8.2.5 Verschiebung derOxyhämoglobin-Dissoziationskurve -- 8.3 Gelöster Sauerstoff: Brauchen wir Hämoglobin wirklich und warum ist es in den Erythrozyten? -- 8.4 Kohlendioxidtransport -- 8.4.1 Kohlendioxid im Plasma -- 8.4.2 Kohlendioxid im Vollblut -- 8.4.3 Gasaustausch in der Lunge -- 8.4.4 Die transportierten Kohlendioxidmengen -- 8.4.5 Die Kohlendioxiddissoziationskurve -- 8.5 Säure-Basen-Haushalt -- 8.5.1 Ein wenig Chemie -- 8.5.2 Pufferkompartimente des Körpers -- 8.5.3 Normale Wasserstoffionenkonzentration im Plasma -- 8.5.4 Blutpufferung -- 8.5.5 Der pK-Wert eines Puffers. , 8.5.6 Proteine als Puffer -- 8.5.7 Phosphate als Puffer -- 8.5.8 Bikarbonat als Puffer -- 8.5.9 Berechnung und Darstellung des Säure-Basen-Status -- 8.5.10 Klinische Messungen -- 9 - Chemische Kontrolle der Atmung -- 9.1 Einleitung -- 9.2 Sauerstoffmangel -- 9.2.1 Histologie, Embryologie und Anatomie der Glomera carotica -- 9.2.2 Hypoxische Stimulation -- 9.2.3 Hyperkapnische Stimulation -- 9.2.4 Hypoxie und Atmung -- 9.2.5 Langfristige hypoxische Stimulation und Anästhesie -- 9.3 Kohlendioxidüberschuss -- 9.3.1 Reaktion der zentralen Chemorezeptoren -- 9.3.2 Lokalisierung der zentralen Chemorezeptoren -- 9.3.3 Beziehung zwischen Blut und Liquor -- 9.3.4 Asphyxie -- 10 Nervale Kontrolle der Atmung -- 10.1 Einleitung -- 10.2 Rhythmusgenerator -- 10.3 Atemmuster bei COPD -- 10.4 „Atemzentren" -- 10.5 Medulläre Gruppen -- 10.5.1 Dorsale respiratorische Gruppe (DRG) -- 10.5.2 Ventrale respiratorische Gruppe (VRG) -- 10.6 Bewusste Atemkontrolle -- 10.7 Innervation der Atemmuskulatur -- 10.8 Neuromuskuläre Krankheiten -- 10.9 Vagusreflexe -- 10.9.1 Langsam adaptierende Rezeptoren (pulmonale Dehnungsrezeptoren) -- 10.9.2 Schnell adaptierende Rezeptoren (Irritantrezeptoren) -- 10.9.3 C-Faser-Rezeptoren -- 10.10 Dyspnoe -- 10.11 Andere Reflexe -- 10.11.1 Nase und Pharynx -- 10.11.2 Schlucken -- 10.11.3 Thoraxwand -- 10.11.4 Husten -- 10.11.5 Somatische und viszerale Reflexe -- 11 - Lungenfunktionstests: Messung der Behinderung -- 11.1 Einleitung -- 11.2 Spirometrie -- 11.3 Messungen des Atemflusses -- 11.4 Ganzkörperplethysmografie -- 11.5 Lungenmechanik -- 11.5.1 Compliance -- 11.5.2 Widerstand -- 11.6 Transferfaktor (Diffusionskapazität) -- 11.6.1 Steady-State-Methode -- 11.6.2 Single-Breath-Methode -- 11.7 Blutgasanalyse -- 11.8 Gasauswaschung -- 11.8.1 Single-breath Washout -- 11.8.2 Multiple-breath Washout -- 11.8.3 Auswaschung von Inertgasen. , 11.8.4 Mehrfach-Auswaschung von Inertgasen -- 11.9 Belastungstests -- 11.10 Provokationstests -- 12 - Einige wissenschaftliche Grundlagen -- 12.1 Aggregatzustände -- 12.2 Elastizität und vernarbte Lungen -- 12.3 Die Gasgesetze -- 12.4 Gasfluss (der im Krankheitsfall beeinträchtigt sein kann) -- 12.5 Oberflächenspannung und Blasen: Warum die Lungen von Frühgeborenen oft kollabieren -- 12.6 Die Messung von Gasvolumina: das Krankheitsausmaß ermitteln -- Glossar -- Register -- Symbole -- A -- B -- C -- D -- E -- F -- G -- H -- I -- J -- K -- L -- M -- N -- O -- P -- R -- S -- T -- U -- V -- W -- X -- Y -- Z.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: [3H]-Methyllycaconitine ([3H]-MLA) is a new radioligand with selectivity for α7-type neuronal nicotinic acetylcholine receptors (nAChRs). In our previous study [Davies, A.R.L., Hardick, D.J., Blagbrough, I.S., Potter, B.V.L., Wolstenholme, A.J. & Wonnacott, S. (1999) Neuropharmacology, 38, 679–690], this radioligand labelled a single class of site in rat brain membranes; its pharmacology and distribution in crudely dissected brain regions closely paralleled that of the well-established α7-ligand [125I]-α-bungarotoxin. However, a small population of [3H]-MLA binding sites was apparently insensitive to α-bungarotoxin. Here we have extended the study to mouse brain, using autoradiography to examine the distribution of [3H]-MLA and [125I]-α-bungarotoxin binding sites. [3H]-MLA labelled a single class of site in mouse brain membranes with a KD of 2.2 n m and a Bmax of 45.6 fmol/mg protein. Specific binding, defined by unlabelled MLA (Ki = 0.69 n m), was completely inhibited by (–)-nicotine (Ki = 1.62 μm), whereas α-bungarotoxin inhibited only 85% of specific binding (Ki = 3.5 n m). The distributions of [125I]-α-bungarotoxin and [3H]-MLA binding sites were compared by autoradiography, and binding was quantitated in 72 brain regions. Binding of both radioligands was highly correlated, with highest densities in the dorsal tegmental nucleus of the pons, colliculi and hippocampus. Serial sections labelled with [3H]-MLA in the absence or presence of unlabelled MLA or α-bungarotoxin provided no evidence for any α-bungarotoxin-resistant binding. The results are discussed in terms of binding sites that are inaccessible to α-bungarotoxin in membrane preparations. This study demonstrates the utility of [3H]-MLA for characterization of α7-type nicotinic receptors in mammalian brain, and suggests that it labels a population identical to that defined by [125I]-α-bungarotoxin.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    London : Periodicals Archive Online (PAO)
    Medical History. 17 (1973) 386 
    ISSN: 0025-7273
    Topics: History , Medicine
    Description / Table of Contents: News, Notes and Queries
    Notes: OCTOBER
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    BioEssays 18 (1996), S. 841-845 
    ISSN: 0265-9247
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The mechanisms responsible for the fine tuning of development, where the wildtype phenotype is reproduced with high fidelity, are not well understood. The difficulty in approaching this problem is the identification of mutant phenotypes indicative of a defect in these fine-tuning control mechanisms. Evolutionary biologists have used asymmetry as a measure of developmental homeostasis. The rationale for this was that, since the same genome controls the development of the left and right sides of a bilaterally symmetrical organism, departures from symmetry can be used to measure genetic or environmental perturbations. This paper examines the relationship between asymmtry and resistance to organophosphorous insecticides in the Australian sheep blowfly, Lucilia cuprina. A resistance gene, Rop-1, which encodes a carboxylesterase enzyme, also confers a significant increase in asymmetry. Continued exposure of resistant populations to insecticide has selected a dominant suppressor of the asymmetry phenotype. Genetic evidence indicates that the modifier is the L. cuprina Notch homologue.
    Additional Material: 1 Tab.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-07-01
    Description: Ocean acidification (OA) poses a major threat to marine animals, especially marine shelled invertebrates such as molluscs. Although many organisms are capable of compensating for the effects of OA, this can impose physiological costs and impact performance (e.g. through increased metabolism and decreased growth). Sublethal injuries on shells may provoke changes in energy allocation. Under acidified conditions, organisms would spend less energy on reproduction and somatic growth to repair the damage. Therefore, we analysed the physiological responses of the intertidal gastropod Tritia reticulata during shell regeneration under OA conditions. We simulated a sub-lethal predation event (a notch in the outer lip of the shell) and individuals were exposed to control (pH 8.08) and low pH scenarios (pH 7.88 and 7.65). After two months exposure, all individuals showed shell repair, with a full repair rate observed in 75% of individuals. Contrary to expectations, shell repair following sub-lethal damage and OA had no apparent impact on physiological state in terms of energy reserves (as measured by whole-animal Carbon/Nitrogen) or growth potential (as measured by whole-animal RNA:Protein and RNA:DNA ratios). As an intertidal organism, T. reticulata could be resilient to future global environmental change because of compensatory mechanisms that are inherent in intertidal animals, and may represent a robust species with which to study future scenarios of OA in temperate coastal ecosystems. However, unrestricted food availability during experiment could have played a role in the results and therefore food limitation should be considered in future studies regarding shell repair and metabolism under the effects of OA.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-10-07
    Description: An important aim of large, pan-European scientific projects with numerous research groups is to integrate and visualize the acquired distributed data sets and results. The large volume of diverse data gathered and the need to disseminate results among the scientific community and beyond requires using a Geographic Information System (GIS). This article presents our experiences in creating a unified Web-based GIS for HERMES. The HERMES-GIS is based on Web Mapping Services that include direct links to the World Data Center for Marine Environmental Science and its large, long-term geoscience data archive and publication unit, PANGAEA (http://www.pangaea.de). It incorporates metadata and data from all project partners to provide users with basic analytical and visualization tools for archived (distributed) and personal (local) data, and it is also a policymaking tool. Additionally, we illustrate two important GIS applications inside the HERMES communitythe use of data models to integrate several subdisciplines and the use of predictive habitat modeling.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-06-07
    Description: The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Rabe, B., Heuze, C., Regnery, J., Aksenov, Y., Allerholt, J., Athanase, M., Bai, Y., Basque, C., Bauch, D., Baumann, T. M., Chen, D., Cole, S. T., Craw, L., Davies, A., Damm, E., Dethloff, K., Divine, D., Doglioni, F., Ebert, F., Fang, Y-C., Fer, I., Fong, A. A., Gradinger, R., Granskog, M. A., Graupner, R., Haas, C., He, H., He, Y., Hoppmann, M., Janout, M., Kadko, D., Kanzow, T., Karam, S., Kawaguchi, Y., Koenig, Z., Kong, B., Krishfield, R. A., Krumpen, T., Kuhlmey, D., Kuznetsov, I., Lan, M., Laukert, G., Lei, R., Li, T., Torres-Valdés, S., Lin, L,. Lin, L., Liu, H., Liu, N., Loose, B., Ma, X., MacKay, R., Mallet, M., Mallett, R. D. C., Maslowski, W., Mertens, C., Mohrholz, V., Muilwijk, M., Nicolaus, M., O’Brien, J. K., Perovich, D., Ren, J., Rex, M., Ribeiro, N., Rinke, A., Schaffer, J., Schuffenhauer, I., Schulz, K., Shupe, M. D., Shaw, W., Sokolov, V., Sommerfeld, A., Spreen, G., Stanton, T., Stephens, M., Su, J., Sukhikh, N., Sundfjord, A., Thomisch, K., Tippenhauer, S., Toole, J. M., Vredenborg, M., Walter, M., Wang, H., Wang, L., Wang, Y., Wendisch, M., Zhao, J., Zhou, M., & Zhu, J. Overview of the MOSAiC expedition: physical oceanography. Elementa: Science of the Anthropocene, 10(1), (2022): 1, https://doi.org/10.1525/elementa.2021.00062.
    Description: Arctic Ocean properties and processes are highly relevant to the regional and global coupled climate system, yet still scarcely observed, especially in winter. Team OCEAN conducted a full year of physical oceanography observations as part of the Multidisciplinary drifting Observatory for the Study of the Arctic Climate (MOSAiC), a drift with the Arctic sea ice from October 2019 to September 2020. An international team designed and implemented the program to characterize the Arctic Ocean system in unprecedented detail, from the seafloor to the air-sea ice-ocean interface, from sub-mesoscales to pan-Arctic. The oceanographic measurements were coordinated with the other teams to explore the ocean physics and linkages to the climate and ecosystem. This paper introduces the major components of the physical oceanography program and complements the other team overviews of the MOSAiC observational program. Team OCEAN’s sampling strategy was designed around hydrographic ship-, ice- and autonomous platform-based measurements to improve the understanding of regional circulation and mixing processes. Measurements were carried out both routinely, with a regular schedule, and in response to storms or opening leads. Here we present along-drift time series of hydrographic properties, allowing insights into the seasonal and regional evolution of the water column from winter in the Laptev Sea to early summer in Fram Strait: freshening of the surface, deepening of the mixed layer, increase in temperature and salinity of the Atlantic Water. We also highlight the presence of Canada Basin deep water intrusions and a surface meltwater layer in leads. MOSAiC most likely was the most comprehensive program ever conducted over the ice-covered Arctic Ocean. While data analysis and interpretation are ongoing, the acquired datasets will support a wide range of physical oceanography and multi-disciplinary research. They will provide a significant foundation for assessing and advancing modeling capabilities in the Arctic Ocean.
    Description: The following projects and funding agencies contributed to this work: Why is the deep Arctic Ocean Warming is funded by the Swedish Research Council, project number 2018-03859, and berth fees for this project were covered by the Swedish Polar Research Secretariat; The Changing Arctic Ocean (CAO) program, jointly funded by the United Kingdom Research and Innovation (UKRI) Natural Environment Research Council (NERC) and the Bundesministerium für Bildung und Forschung (BMBF), in particular, the CAO projects Advective Pathways of nutrients and key Ecological substances in the ARctic (APEAR) grants NE/R012865/1, NE/R012865/2, and #03V01461, and the project Primary productivity driven by Escalating Arctic NUTrient fluxeS grant #03F0804A; The Research Council of Norway (AROMA, grant no 294396; HAVOC, grant no 280292; and CAATEX, grant no 280531); Collaborative Research: Thermodynamics and Dynamic Drivers of the Arctic Sea Ice Mass Budget at Multidisciplinary drifting Observatory for the Study of the Arctic Climate; National Science Foundation (NSF) projects 1723400, Stanton; OPP-1724551, Shupe; The Helmholtz society strategic investment Frontiers in Arctic Marine monitoring (FRAM); Deutsche Forschungsgemeinschaft (German Research Foundation) through the Transregional Collaborative Research Centre TRR 172 “ArctiC Amplification: Climate Relevant Atmospheric and SurfaCe Processes, and Feedback Mechanisms (AC)3” (grant 268020496); The Japan Society for the Promotion of Science (grant numbers JP18H03745, JP18KK0292, and JP17KK0083) and the COLE grant of U. Tokyo; National Key Research and Development Plan Sub-Project of Ministry of Science and Technology of China (2016YFA0601804), “Simulation, Prediction and Regional Climate Response of Global Warming Hiatus”, 2016/07-2021/06; National Science Foundation grant number OPP-1756100 which funded two of the Ice-Tethered Profilers and all the Ice-Tethered Profiler deployments; Chinese Polar Environmental Comprehensive Investigation and Assessment Programs, funded by the Chinese Arctic and Antarctic Administration; Marine Science and Technology Fund of Shandong Province for Qingdao National Laboratory for Marine Science and Technology (Grant: 2018SDKJ0104-1) and Chinese Natural Science Foundation (Grant: 41941012); UK NERC Long-term Science Multiple Centre National Capability Programme “North Atlantic Climate System Integrated Study (ACSIS)”, grant NE/N018044/1; The London NERC Doctoral Training Partnership grant (NE/L002485/1) which funded RDCM; NSF grant number OPP-1753423, which funded the 7Be tracer –measurements; and The Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) through its projects: AWI_OCEAN, AWI_ROV, AWI_ICE, AWI_SNOW, AWI_ECO, AWI_ATMO, and AWI_BGC.
    Keywords: Physical oceanography ; MOSAiC ; Arctic ; Coupled ; Drift ; Sea ice
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-04-23
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-02-24
    Keywords: B_LANDER; Battery terminal voltage; Bottom lander; DATE/TIME; Deep-sea Sponge Grounds Ecosystems of the North Atlantic; G. O. Sars (2003); GS16A-202; GS2016109A; GS2016109A-07-LAN-01; Oxygen; Oxygen saturation; Schultz Bank; SponGES; Temperature, water
    Type: Dataset
    Format: text/tab-separated-values, 5110 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...