GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Language
  • 1
    Keywords: Hochschulschrift
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (105 Blatt = 5 MB) , Illustrationen
    Language: English
    Note: Zusammenfassung in englischer und russischer Sprache
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Deep-sea research. Part 1, Oceanographic research papers, Amsterdam [u.a.] : Elsevier Science, 1993, 56(2009), 4, Seite 513-527, 1879-0119
    In: volume:56
    In: year:2009
    In: number:4
    In: pages:513-527
    Description / Table of Contents: Inflow of Atlantic water (AW) from Fram Strait and the Barents Sea into the Arctic Ocean conditions the intermediate (100-1000 m) waters of the Arctic Ocean Eurasian margins. While over the Siberian margin the Fram Strait AW branch (FSBW) has exhibited continuous dramatic warming beginning in 2004, the tendency of the Barents Sea AW branch (BSBW) has remained poorly known. Here we document the contrary cooling tendency of the BSBW through the analysis of observational data collected from the icebreaker Kapitan Dranitsyn over the continental slope of the Eurasian Basin in 2005 and 2006. The CTD data from the R.V. Polarstern cruise in 1995 were used as a reference point for evaluating external atmospheric and sea-ice forcing and oxygen isotope analysis. Our data show that in 2006 the BSBW core was saltier (by ~0.037), cooler (~0.41 ʿC), denser (by ~0.04 kg/m3), deeper (by 150-200 m), and relatively better ventilated (by 78 mymol/kg of dissolved oxygen, or by 1.11.7% of saturation) compared with 2005. We hypothesize that the shift of the meridional wind from off-shore to on-shore direction during the BSBW translation through the Barents and northern Kara seas results in longer surface residence time for the BSBW sampled in 2006 compared with samples from 2005. The cooler, more saline, and better-ventilated BSBW sampled in 2006 may result from longer upstream translation through the Barents and northern Kara seas where the BSBW was modified by sea-ice formation and interaction with atmosphere. The data for stable oxygen isotopes from 1995 and 2006 reveals amplified brine modification of the BSBW core sampled downstream in 2006, which supports the assumption of an increased upstream residence time as indicated by wind patterns and dissolved oxygen values.
    Type of Medium: Online Resource
    Pages: graph. Darst
    ISSN: 1879-0119
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Keywords: Buch Book ; Bericht Hochschulschrift ; Serienstueck ; Einteiler ; Hochschulschrift ; Forschungsbericht ; Arktis ; Meer ; Tiefenwasser ; Süßwasser ; Zirkulation ; Isotopenhäufigkeit ; Arktis ; Meer ; Oberflächenwasser ; Süßwasser ; Zirkulation ; Isotopenhäufigkeit ; Nordpolarmeer ; Salzgehalt ; Nordpolarmeer ; Sauerstoff-18 ; Nordpolarmeer ; Süßwasser
    Type of Medium: Book
    Pages: 144 S. , graph. Darst., Kt.
    Series Statement: Berichte zur Polarforschung 159
    RVK:
    RVK:
    Language: English
    Note: Literaturverz. S. 109 -115 , Intermediärsprache: Deutsch , Teilw. zugl.: Heidelberg, Univ., Diss., 1994
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Journal of geophysical research. C, Oceans, Hoboken, NJ : Wiley, 1978, 114(2009), 6, 2169-9291
    In: volume:114
    In: year:2009
    In: number:6
    In: extent:19
    Description / Table of Contents: Through the analysis of observational mooring data collected at the northeastern Laptev Sea continental slope in 2004-2007, we document a hydrographic seasonal signal in the intermediate Atlantic Water (AW) layer, with generally higher temperature and salinity from December-January to May-July and lower values from May-July to December-January. At the mooring position, this seasonal signal dominates, contributing up to 75% of the total variance. Our data suggest that the entire AW layer down to at least 840 m is affected by seasonal cycling, although the strength of the seasonal signal in temperature and salinity reduces from 260 m (±0.25ʿC and ±0.025 psu) to 840 m (±0.05ʿC and ±0.005 psu). The seasonal velocity signal is substantially weaker, strongly masked by high-frequency variability, and lags the thermohaline cycle by 45-75 days. We hypothesize that our mooring record shows a time history of the along-margin propagation of the AW seasonal signal carried downstream by the AW boundary current. Our analysis suggests that the seasonal signal in the Fram Strait Branch of AW (FSBW) at 260 m is predominantly translated from Fram Strait, while the seasonality in the Barents Sea branch of AW (BSBW) domain (at 840 m) is attributed instead to the seasonal signal input from the Barents Sea. However, the characteristic signature of the BSBW seasonal dynamics observed through the entire AW layer leads us to speculate that BSBW also plays a role in seasonally modifying the properties of the FSBW.
    Type of Medium: Online Resource
    Pages: 19 , graph. Darst
    ISSN: 2169-9291
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Geophysical research letters, Hoboken, NJ : Wiley, 1974, 36(2009), 1944-8007
    In: volume:36
    In: year:2009
    In: extent:4
    Description / Table of Contents: The winter net sea-ice production (NSIP) over the Laptev Sea shelf is inferred from continuous summer-to-winter historical salinity records of 1960s-1990s. While the NSIP strongly depends on the assumed salinity of newly formed ice, the NSIP quasi-decadal variability can be linked to the wind-driven circulation anomalies in the Laptev Sea region. The increased wind-driven advection of ice away from the Laptev Sea coast when the Arctic Oscillation (AO) is positive implies enhanced coastal polynya sea-ice production and brine release in the shelf water. When the AO is negative, the NSIP and seasonal salinity amplitude tends to weaken. These results are in reasonable agreement with sea-ice observations and modeling.
    Type of Medium: Online Resource
    Pages: 4 , graph. Darst
    ISSN: 1944-8007
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Geophysical research letters, Hoboken, NJ : Wiley, 1974, 35(2008), 1944-8007
    In: volume:35
    In: year:2008
    In: extent:5
    Description / Table of Contents: The seasonal hydrographic cycle explains about 25-75% of the entire salinity variability spectrum of the Siberian shelf hydrography. Quasi-decadal variations in the seasonal salinity difference over the Laptev and East Siberian sea shelves derived from continuous summer-to-winter historical records from the 1960s-1990s are attributed to atmospheric vorticity quasi-decadal variations. Summer cyclonic vorticity results in riverine water accumulation on the shelf, increasing the salinity summer-to-winter difference. Summer anticyclonic wind pattern enhances fresh water movement from the shelf towards the Arctic Ocean that tends to weaken the seasonal salinity amplitude.
    Type of Medium: Online Resource
    Pages: 5 , graph. Darst
    ISSN: 1944-8007
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Continental shelf research, Amsterdam [u.a.] : Elsevier Science, 1982, 29(2009), 15, Seite 1815-1820, 0278-4343
    In: volume:29
    In: year:2009
    In: number:15
    In: pages:1815-1820
    Description / Table of Contents: The hydrography of the Laptev Sea is significantly influenced by river water and sea-ice processes, which are highly variable over the annual cycle. Despite of an estuarine structure the inner and outer shelf regions are decoupled at times as documented by the stability of a warm intermediate layer formed during summer below the Lena River plume. We demonstrate that a remnant of this warm layer is preserved below the fast ice until the end of winter, while only slightly farther to the north, offshore of the landfast ice in the polynya region, the pycnocline is eroded and no signature of this layer is found. The warm intermediate layer (WIL) formed during summer can be used as tracer for Laptev Sea shelf waters throughout the winter. Thereby, residence times of southern Laptev Sea waters can be estimated to be at least from summer to the end of winter/spring of the following year.
    Type of Medium: Online Resource
    Pages: graph. Darst
    ISSN: 0278-4343
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-01-31
    Description: This paper examines the role of the Arctic Ocean Atlantic water (AW) in modifying the Laptev Sea shelf bottom hydrography on the basis of historical records from 1932 to 2008, field observations carried out in April–May 2008, and 2002–2009 cross‐slope measurements. A climatology of bottom hydrography demonstrates warming that extends offshore from the 30–50 m depth contour. Bottom layer temperature‐time series constructed from historical records links the Laptev Sea outer shelf to the AW boundary current transporting warm and saline water from the North Atlantic. The AW warming of the mid‐1990s and the mid‐2000s is consistent with outer shelf bottom temperature variability. For April–May 2008 we observed on‐shelf near‐bottom warm and saline water intrusions up to the 20 m isobath. These intrusions are typically about 0.2°C warmer and 1–1.5 practical salinity units saltier than ambient water. The 2002–2009 cross‐slope observations are suggestive for the continental slope upward heat flux from the AW to the overlying low‐halocline water (LHW). The lateral on‐shelf wind‐driven transport of the LHW then results in the bottom layer thermohaline anomalies recorded over the Laptev Sea shelf. We also found that polynya‐induced vertical mixing may act as a drainage of the bottom layer, permitting a relatively small portion of the AW heat to be directly released to the atmosphere. Finally, we see no significant warming (up until now) over the Laptev Sea shelf deeper than 10–15 m in the historical record. Future climate change, however, may bring more intrusions of Atlantic‐modified waters with potentially warmer temperature onto the shelf, which could have a critical impact on the stability of offshore submarine permafrost.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-02-06
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-02-08
    Description: The GEOTRACES Intermediate Data Product 2017 (IDP2017) is the second publicly available data product of the international GEOTRACES programme, and contains data measured and quality controlled before the end of 2016. The IDP2017 includes data from the Atlantic, Pacific, Arctic, Southern and Indian oceans, with about twice the data volume of the previous IDP2014. For the first time, the IDP2017 contains data for a large suite of biogeochemical parameters as well as aerosol and rain data characterising atmospheric trace element and isotope (TEI) sources. The TEI data in the IDP2017 are quality controlled by careful assessment of intercalibration results and multi-laboratory data comparisons at crossover stations. The IDP2017 consists of two parts: (1) a compilation of digital data for more than 450 TEIs as well as standard hydrographic parameters, and (2) the eGEOTRACES Electronic Atlas providing an on-line atlas that includes more than 590 section plots and 130 animated 3D scenes. The digital data are provided in several formats, including ASCII, Excel spreadsheet, netCDF, and Ocean Data View collection. Users can download the full data packages or make their own custom selections with a new on-line data extraction service. In addition to the actual data values, the IDP2017 also contains data quality flags and 1-σ data error values where available. Quality flags and error values are useful for data filtering and for statistical analysis. Metadata about data originators, analytical methods and original publications related to the data are linked in an easily accessible way. The eGEOTRACES Electronic Atlas is the visual representation of the IDP2017 as section plots and rotating 3D scenes. The basin-wide 3D scenes combine data from many cruises and provide quick overviews of large-scale tracer distributions. These 3D scenes provide geographical and bathymetric context that is crucial for the interpretation and assessment of tracer plumes near ocean margins or along ridges. The IDP2017 is the result of a truly international effort involving 326 researchers from 22 countries. This publication provides the critical reference for unpublished data, as well as for studies that make use of a large cross-section of data from the IDP2017.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...