GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-02-08
    Description: Molybdenum (Mo) concentrations and isotope compositions in sediments and shales are commonly used as proxies for anoxic and sulfidic (i.e., euxinic) conditions in the water column of paleo-marine systems. A basic assumption underlying this practice is that the proxy signal extracted from the geological record is controlled by long-term (order of decades to millennia) Mo scavenging in the euxinic water column rather than Mo deposition during brief episodes or events (order of weeks to months). To test whether this assumption is viable we studied the biogeochemical cycling of Mo and its isotopes in sediments of the intermittently euxinic Gotland Deep in the central Baltic Sea. Here, multiannual to decadal periods of euxinia are occasionally interrupted by inflow events during which well‑oxygenated water from the North Sea penetrates into the basin. During these events manganese (Mn) (oxyhydr)oxide minerals are precipitated in the water column, which are known to scavenge Mo. We present sediment and pore water Mo and Mo isotope data for sediment cores which were taken before and after a series of inflow events between 2014 and 2016. After seawater inflow, pore water Mo concentrations in anoxic surface sediments exceed the salinity-normalized concentration by more than two orders of magnitude and coincide with transient peaks of dissolved Mn. A fraction of the Mo liberated into the pore water is transported by diffusion in a downward direction and sequestered by organic matter within the sulfidic zone of the sediment. Diffusive flux calculations as well as a mass balance that is based on the sedimentary Mo isotope composition suggest that about equal proportions of the Mo accumulating in the basin are delivered by Mn (oxyhydr)oxide minerals during inflow events and Mo scavenging with hydrogen sulfide during euxinic periods. Since the anoxic surface sediment where Mo is released from Mn (oxyhydr)oxides are separated by several centimeters from the deeper sulfidic layers where Mo is removed, the solid phase record of Mo concentration and isotope composition would be misinterpreted if steady state Mo accumulation was assumed. Based on our observations in the Gotland Deep, we argue that short-term redox fluctuations need to be considered when interpreting Mo-based paleo-records.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Format: other
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-02-06
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-09-23
    Description: Oxygen minimum zones (OMZs) that impinge on continental margins favor the release of phosphorus (P) from the sediments to the water column, enhancing primary productivity and the maintenance or expansion of low-oxygen waters. A comprehensive field program in the Peruvian OMZ was undertaken to identify the sources of benthic P at six stations, including the analysis of particles from the water column, surface sediments, and pore fluids, as well as in situ benthic flux measurements. A major fraction of solid-phase P was bound as particulate inorganic P (PIP) both in the water column and in sediments. Sedimentary PIP increased with depth in the sediment at the expense of particulate organic P (POP). The ratio of particulate organic carbon (POC) to POP exceeded the Redfield ratio both in the water column (202 ± 29) and in surface sediments (303 ± 77). However, the POC to total particulate P (TPP = POP + PIP) ratio was close to Redfield in the water column (103 ± 9) and in sediment samples (102 ± 15). This suggests that the relative burial efficiencies of POC and TPP are similar under low-oxygen conditions and that the sediments underlying the anoxic waters on the Peru margin are not depleted in P compared to Redfield. Benthic fluxes of dissolved P were extremely high (up to 1.04 ± 0.31 mmol m−2 d−1), however, showing that a lack of oxygen promotes the intensified release of dissolved P from sediments, whilst preserving the POC / TPP burial ratio. Benthic dissolved P fluxes were always higher than the TPP rain rate to the seabed, which is proposed to be caused by transient P release by bacterial mats that had stored P during previous periods when bottom waters were less reducing. At one station located at the lower rim of the OMZ, dissolved P was taken up by the sediments, indicating ongoing phosphorite formation. This is further supported by decreasing porewater phosphate concentrations with sediment depth, whereas solid-phase P concentrations were comparatively high.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-02-01
    Description: Large quantities of the greenhouse gas methane (CH4) are stored in the seafloor. The flux of CH4 from the sediments into the water column and finally to the atmosphere is mitigated by a series of microbial methanotrophic filter systems of unknown efficiency at highly active CH4-release sites in shallow marine settings. Here, we studied CH4-oxidation and the methanotrophic community at a high-CH4-flux site in the northern North Sea (well 22/4b), where CH4 is continuously released since a blowout in 1990. Vigorous bubble emanation from the seafloor and strongly elevated CH4 concentrations in the water column (up to 42 µM) indicated that a substantial fraction of CH4 bypassed the highly active (up to ∼2920 nmol cm−3 d−1) zone of anaerobic CH4-oxidation in sediments. In the water column, we measured rates of aerobic CH4-oxidation (up to 498 nM d−1) that were among the highest ever measured in a marine environment and, under stratified conditions, have the potential to remove a significant part of the uprising CH4 prior to evasion to the atmosphere. An unusual dominance of the water-column methanotrophs by Type II methane-oxidizing bacteria (MOB) is partially supported by recruitment of sedimentary MOB, which are entrained together with sediment particles in the CH4 bubble plume. Our study thus provides evidence that bubble emission can be an important vector for the transport of sediment-borne microbial inocula, aiding in the rapid colonization of the water column by methanotrophic communities and promoting their persistence close to highly active CH4 point sources.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-09-23
    Description: Dissolved silicon isotope compositions have been analysed for the first time in pore waters (δ30SiPW) of three short sediment cores from the Peruvian margin upwelling region with distinctly different biogenic opal content in order to investigate silicon isotope fractionation behaviour during early diagenetic turnover of biogenic opal in marine sediments. The δ30SiPW varies between +1.1‰ and +1.9‰ with the highest values occurring in the uppermost part close to the sediment–water interface. These values are of the same order or higher than the δ30Si of the biogenic opal extracted from the same sediments (+0.3‰ to +1.2‰) and of the overlying bottom waters (+1.1‰ to +1.5‰). Together with dissolved silicic acid concentrations well below biogenic opal saturation, our collective observations are consistent with the formation of authigenic alumino-silicates from the dissolving biogenic opal. Using a numerical transport-reaction model we find that approximately 24% of the dissolving biogenic opal is re-precipitated in the sediments in the form of these authigenic phases at a relatively low precipitation rate of 56 μmol Si cm−2 yr−1. The fractionation factor between the precipitates and the pore waters is estimated at −2.0‰. Dissolved and solid cation concentrations further indicate that off Peru, where biogenic opal concentrations in the sediments are high, the availability of reactive terrigenous material is the limiting factor for the formation of authigenic alumino-silicate phases.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-02-01
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    ASLO (Association for the Sciences of Limnology and Oceanography)
    In:  Limnology and Oceanography, 58 (5). pp. 1640-1656.
    Publication Date: 2019-09-23
    Description: During the discovery and description of seven New Zealand methane seep sites, an infaunal assemblage dominated by ampharetid polychaetes was found in association with high seabed methane emission. This ampharetid-bed assemblage had a mean density of 57,000 ± 7800 macrofaunal individuals m−2 and a maximum wet biomass of 274 g m−2, both being among the greatest recorded from deep-sea methane seeps. We investigated these questions: Does the species assemblage present within these ampharetid beds form a distinct seep community on the New Zealand margin? and What type of chemoautotrophic microbes fuel this heterotrophic community? Unlike the other macro-infaunal assemblages, the ampharetid-bed assemblage composition was homogeneous, independent of location. Based on a mixing model of species-specific mass and isotopic composition, combined with published respiration measurements, we estimated that this community consumes 29–90 mmol C m−2 d−1 of methane-fueled biomass; this is 〉 290 times the carbon fixed by anaerobic methane oxidizers in these ampharetid beds. A fatty acid biomarker approach supported the finding that this community, unlike those previously known, consumes primarily aerobic methanotrophic bacteria. Due to the novel microbial fueling and high methane flux rates, New Zealand's ampharetid beds provide a model system to study the influence of metazoan grazing on microbially mediated biogeochemical cycles, including those that involve greenhouse gas emissions
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-09-23
    Description: The discovery that foraminifera are able to use nitrate instead of oxygen as energy source for their metabolism has challenged our understanding of nitrogen cycling in the ocean. It was evident before that only prokaryotes and fungi are able to denitrify. Rate 5 estimates of foraminiferal denitrification were very sparse on a regional scale. Here, we present estimates of benthic foraminiferal denitrification rates from six stations at intermediate water depths in and below the Peruvian oxygen minimum zone (OMZ). Foraminiferal denitrification rates were calculated from abundance and assemblage composition of the total living fauna in both, surface and subsurface sediments, 10 as well as from individual species specific denitrification rates. A comparison with total benthic denitrification rates as inferred by biogeochemical models revealed that benthic foraminifera account for the total denitrification on the shelf between 80 and 250m water depth. They are still important denitrifiers in the centre of the OMZ around 320m (29–56% of the benthic denitrification) but play only a minor role at the lower OMZ 15 boundary and below the OMZ between 465 and 700m (3–7% of total benthic denitrification). Furthermore, foraminiferal denitrification was compared to the total benthic nitrate loss measured during benthic chamber experiments. Foraminiferal denitrification contributes 1 to 50% to the total nitrate loss across a depth transect from 80 to 700 m, respectively. Flux rate estimates ranged from 0.01 to 1.3 mmolm−2 d−1. Fur20 thermore we show that the amount of nitrate stored in living benthic foraminifera (3 to 705 μmolL−1) can be higher by three orders of magnitude as compared to the ambient pore waters in near surface sediments sustaining an important nitrate reservoir in Peruvian OMZ sediments. The substantial contribution of foraminiferal nitrate respiration to total benthic nitrate loss at the Peruvian margin, which is one of the main nitrate sink 25 regions in the world oceans, underpins the importance of previously underestimated role of benthic foraminifera in global biochemical cycles.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Biogeosciences (BG), 9 (12). pp. 5341-5352.
    Publication Date: 2013-01-24
    Description: A 2-Dimensional mathematical reaction-transport model was developed to study the impact of the mud-dwelling frenulate tubeworm Siboglinum sp. on the biogeochemistry of a sediment (MUC15) at the Captain Arutyunov mud volcano (CAMV). By explicitly describing the worm in its surrounding sediment, we are able to make budgets of processes occurring in- or outside of the worm, and to quantify how different worm densities and biomasses affect the anaerobic oxidation of methane (AOM) and sulfide reoxidation (HSox). The model shows that, at the observed densities, the presence of a thin worm body is sufficient to keep the upper 10 cm of sediment well homogenised with respect to dissolved substances, in agreement with observations. By this "bio-ventilation" activity, the worm pushes the sulfate-methane transition (SMT) zone downward to the posterior end of its body, and simultaneously physically separates the sulfide produced during the anaerobic oxidation of methane from oxygen. While there is little scope for AOM to take place in the tubeworm's body, 70% of the sulfide that is produced by sulfate reduction processes or that is advected in the sediment is preferentially shunted via the organism where it is oxidised by endosymbionts providing the energy for the worm's growth. The process of sulfide reoxidation, occurring predominantly in the worm's body is thus very distinct from the anaerobic oxidation of methane, which is a diffuse process that takes place in the sediments in the methane-sulfate transition zone. We show how the sulfide oxidation process is affected by increasing densities and length of the frenulates, and by upward advection velocity. Our biogeochemical model is one of the first to describe tubeworms explicitly. It can be used to directly link biological and biogeochemical observations at seep sites, and to study the impacts of mud-dwelling frenulates on the sediment biogeochemistry under varying environmental conditions. Also, it provides a tool to explore the competition between bacteria and fauna for available energy resources.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Journal of Geophysical Research: Oceans, 119 (10). pp. 6918-6932.
    Publication Date: 2018-02-26
    Description: Continental shelves are predominately (~70%) covered with permeable, sandy sediments. While identified as critical sites for intense oxygen, carbon, and nutrient turnover, constituent exchange across permeable sediments remains poorly quantified. The central North Sea largely consists of permeable sediments and has been identified as increasingly at risk for developing hypoxia. Therefore, we investigate the benthic O2 exchange across the permeable North Sea sediments using a combination of in situ microprofiles, a benthic chamber, and aquatic eddy correlation. Tidal bottom currents drive the variable sediment O2 penetration depth (from ~3 to 8 mm) and the concurrent turbulence-driven 25-fold variation in the benthic sediment O2 uptake. The O2 flux and variability were reproduced using a simple 1-D model linking the benthic turbulence to the sediment pore water exchange. The high O2 flux variability results from deeper sediment O2 penetration depths and increased O2 storage during high velocities, which is then utilized during low-flow periods. The study reveals that the benthic hydrodynamics, sediment permeability, and pore water redox oscillations are all intimately linked and crucial parameters determining the oxygen availability. These parameters must all be considered when evaluating mineralization pathways of organic matter and nutrients in permeable sediments.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...