GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Keywords
Language
  • 1
    Keywords: Forschungsbericht ; Fernerkundung ; Wasserversorgung ; Wasserreserve
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (11 Seiten, 625,14 KB) , Illustrationen
    Language: German
    Note: Förderkennzeichen BMBF 02WGR1431B , Verbundnummer 01177541 , Unterschiede zwischen dem gedruckten Dokument und der elektronischen Ressource können nicht ausgeschlossen werden , Sprache der Zusammenfassung: Deutsch, Englisch
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 35 (2003), S. 373-412 
    ISSN: 0066-4189
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract Recent small-scale turbulence observations allow the mixing regimes in lakes, reservoirs, and other enclosed basins to be categorized into the turbulent surface and bottom boundary layers as well as the comparably quiet interior. The surface layer consists of an energetic wave-affected thin zone at the very top and a law-of-the-wall layer right below, where the classical logarithmic-layer characteristic applies on average. Short-term current and dissipation profiles, however, deviate strongly from any steady state. In contrast, the quasi-steady bottom boundary layer behaves almost perfectly as a logarithmic layer, although periodic seiching modifies the structure in the details. The interior stratified turbulence is extremely weak, even though much of the mechanical energy is contained in baroclinic basin-scale seiching and Kelvin waves or inertial currents (large lakes). The transformation of large-scale motions to turbulence occurs mainly in the bottom boundary and not in the interior, where the local shear remains weak and the Richardson numbers are generally large.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Freshwater biology 49 (2004), S. 0 
    ISSN: 1365-2427
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: 1. In this paper we test the usefulness of acoustic backscatter measurements from a 614 kHz Acoustic Doppler Current Profiler (ADCP) for the qualitative and quantitative characterisation of zooplankton distributions in lakes. ADCP-based backscatter estimates were compared with frequent net hauls obtained during a calibration experiment in which the acoustic backscatter was strongly dominated by vertical migrating Chaoborus flavicans larvae.2. The correlation between backscatter estimates and the C. flavicans concentration was very good. Vertical swimming speed of larvae, measured directly by the ADCP, was up to a maximum of 5 mm s−1 and agreed very well with the observed vertical movement of the backscatter contour lines. Although the strong backscatter from C. flavicans overwhelmed the signal from the remaining zooplankton, a good correlation between backscatter strength and the total remaining zooplankton concentration, dominated by Cyclops spp., was found for the depth and time intervals where no C. flavicans were present.3. In addition to the calibration experiment, longer-term ADCP measurements from different lakes revealed a strong temporal correlation between the onset of the up- and downward migration of zooplankton and the local sunset and sunrise.4. We conclude that ADCPs can be used to monitor plankton distributions both temporally and spatially. It also seems possible to estimate plankton densities after appropriate calibration.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Aquatic sciences 60 (1998), S. 210-219 
    ISSN: 1420-9055
    Keywords: Key words: Lake, mixing, mixed layer, temperature microstructure.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract: A microstructure profiler was designed especially for the investigation of the diurnal dynamics of turbulent mixing in shallow lakes. 7 hours observation of these dynamics in a shallow, polymictic lake shows a multitude of different mixing processes acting together on very short time-scales. Estimated turbulent diffusivities for the surface mixed layer, using the Cox number method, are lognormally distributed with a mean of K z≈ 10-5 m2 s-1. The results are discussed within the context of their relevance for modelling the effect of turbulent mixing on phytoplankton primary production.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-10-17
    Description: Methane (CH4) emissions from small rivers and streams, particularly via ebullition, are currently under-represented in the literature. Here, we quantify the methane effluxes and drivers in a small, Northern European river. Methane fluxes are comparable to those from tropical aquatic systems, with average emissions of 320 mg CH4 m-2 d-1. Two important drivers of methane flux variations were identified in the studied system: 1) temperature-driven sediment methane ebullition and 2) flow-dependent contribution suspected to be hydraulic exchange with adjacent wetlands and small side-bays. This flow-dependent contribution to river methane loading is shown to be negligible for flows less than 4 m3 s-1, and greater than 50% as flows exceed 7 m3 s-1. While the temperature - ebullition relationship is comparable to other systems, the flow rate dependency has not been previously demonstrated. In general, we found that about 80% of the total emissions were due to methane bubbles. Applying ebullition rates to global estimates for fluvial systems, which currently are not considered, could dramatically increase emission rates to ranges from lakes or wetlands. This work illustrates that small rivers can emit significant methane, and highlights the need for further studies, especially the link between hydrodynamics and connected wetlands.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    ASLO (Association for the Sciences of Limnology and Oceanography)
    In:  Limnology and Oceanography, 59 (5). pp. 1637-1650.
    Publication Date: 2019-06-27
    Description: We compared oxygen fluxes measured simultaneously at the pelagic and benthic oxycline in a lake and analyze their relation to hydrodynamic forcing conditions. While the mean oxygen fluxes did not differ significantly among both sites, the fluxes were highly variable in time. Short energetic periods contributed disproportionately to the overall oxygen flux above both the benthic and pelagic oxycline. In the pelagic region, mean fluxes across the oxycline were limited by low diffusivities (7 3 1028 m2 s21) and were one to two orders of magnitude smaller than fluxes above the oxycline (0.5 and 32 mmol m22 d21, respectively). A one-dimensional transport model was used to estimate sources and sinks of oxygen potentially causing this imbalance. The model results indicate that 92% of dissolved oxygen transported into the oxycline is used by the respiration of organic material imported into the oxycline from the epilimnion; chemical oxygen consumption associated with the upward flux of reduced substances is negligible. Our findings indicate that under such conditions, dissolved oxygen consumption and therewith mineralization within the oxycline can be comparable with the corresponding rates occurring in the sediments of eutrophic lakes with an oxic hypolimnion.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Journal of Geophysical Research: Oceans, 119 (10). pp. 6918-6932.
    Publication Date: 2018-02-26
    Description: Continental shelves are predominately (~70%) covered with permeable, sandy sediments. While identified as critical sites for intense oxygen, carbon, and nutrient turnover, constituent exchange across permeable sediments remains poorly quantified. The central North Sea largely consists of permeable sediments and has been identified as increasingly at risk for developing hypoxia. Therefore, we investigate the benthic O2 exchange across the permeable North Sea sediments using a combination of in situ microprofiles, a benthic chamber, and aquatic eddy correlation. Tidal bottom currents drive the variable sediment O2 penetration depth (from ~3 to 8 mm) and the concurrent turbulence-driven 25-fold variation in the benthic sediment O2 uptake. The O2 flux and variability were reproduced using a simple 1-D model linking the benthic turbulence to the sediment pore water exchange. The high O2 flux variability results from deeper sediment O2 penetration depths and increased O2 storage during high velocities, which is then utilized during low-flow periods. The study reveals that the benthic hydrodynamics, sediment permeability, and pore water redox oscillations are all intimately linked and crucial parameters determining the oxygen availability. These parameters must all be considered when evaluating mineralization pathways of organic matter and nutrients in permeable sediments.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    American Chemistry Society
    In:  Environmental Science & Technology, 47 (15). pp. 8130-8137.
    Publication Date: 2019-09-24
    Description: Inland waters transport and transform substantial amounts of carbon and account for 18% of global methane emissions. Large reservoirs with higher areal methane release rates than natural waters contribute significantly to freshwater emissions. However, there are millions of small dams worldwide that receive and trap high loads of organic carbon and can therefore potentially emit significant amounts of methane to the atmosphere. We evaluated the effect of damming on methane emissions in a central European impounded river. Direct comparison of riverine and reservoir reaches, where sedimentation in the latter is increased due to trapping by dams, revealed that the reservoir reaches are the major source of methane emissions (0.23 mmol CH4 m–2 d–1 vs 19.7 mmol CH4 m–2 d–1, respectively) and that areal emission rates far exceed previous estimates for temperate reservoirs or rivers. We show that sediment accumulation correlates with methane production and subsequent ebullitive release rates and may therefore be an excellent proxy for estimating methane emissions from small reservoirs. Our results suggest that sedimentation-driven methane emissions from dammed river hot spot sites can potentially increase global freshwater emissions by up to 7%
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-04-22
    Description: Changes in the hydrological regime of the saline closed basin Lake Van, a large, deep lake in eastern Turkey, resulted in a lake level increase by about 2 m between 1988 and 1995, followed by a 1.5 m decrease until 2003 and a relatively constant lake level thereafter. Based on measurements of transient tracers (sulfur hexafluoride, CFC-12, 3H, 3He, 4He, Ne), dissolved oxygen, light transmission, conductivity-temperature-depth profiles, and thermistor data, we investigate the implications associated with lake level fluctuations for deep-water renewal and oxygenation. Our data suggest that deep-water renewal was significantly reduced in Lake Van between 1990 and 2005. This change in mixing conditions resulted in the formation of a more than 100 m thick anoxic deep-water body below 325 m depth. Apparently, the freshwater inflows responsible for the lake level rise between 1988 and 1995 decreased the salinity of the surface water sufficiently that the generation of density plumes during winter cooling was substantially reduced compared to that in the years before the lake level rise. Significant renewal and oxygenation of the deep water did not occur until at least 2005, although by 2003 the lake level was back to almost the same level as in 1988. This study suggests that short-term changes in the hydrological regime, resulting in lake level changes of a couple of meters, can lead to significant and long-lasting changes in deep-water renewal and oxic conditions in deep saline lakes.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-07-31
    Description: Methane bubble formation and transport is an important component of biogeochemical carbon cycling in aquatic sediments. To improve understanding of how sediment mechanical properties influence bubble growth and transport in freshwater sediments, a 20-day laboratory incubation experiment using homogenized natural clay and sand was performed. Methane bubble development at high resolution was characterized by μCT. Initially, capillary invasion by microbubbles (〈0.1 mm) dominated bubble formation, with continued gas production (4 days for clay; 8 days for sand), large bubbles formed by deforming the surrounding sediment, leading to enhanced of macropore connectivity in both sediments. Growth of large bubbles (〉1 mm) was possible in low shear yield strength sediments (〈100 Pa), where excess gas pressure was sufficient to displace the sediment. Lower within the sand, higher shear yield strength (〉360 Pa) resulted in a predominance of microbubbles where the required capillary entry pressure was low. Enhanced bubble migration, triggered by a controlled reduction in hydrostatic head, was observed throughout the clay column, while in sand mobile bubbles were restricted to the upper 6 cm. The observed macropore network was the dominant path for bubble movement and release in both sediments.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...