GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • PANGAEA  (3)
Publikationsart
Erscheinungszeitraum
  • 1
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  MARUM - Center for Marine Environmental Sciences, University Bremen | Supplement to: Thal, Janis; Tivey, Maurice; Yoerger, Dana; Jöns, Niels; Bach, Wolfgang (2014): Geologic setting of PACManus hydrothermal area — High resolution mapping and in situ observations. Marine Geology, 355, 98-114, https://doi.org/10.1016/j.margeo.2014.05.011
    Publikationsdatum: 2023-06-27
    Beschreibung: This study presents a systematic analysis and interpretation of autonomous underwater vehicle-based microbathymetry combined with remotely operated vehicle (ROV) video recordings, rock analyses and temperaturemeasurements within the PACManus hydrothermal area located on Pual Ridge in the Bismarck Sea of eastern Manus Basin. The data obtained during research cruise Magellan-06 and So-216 provides a framework for understanding the relationship between the volcanism, tectonismand hydrothermal activity. PACManus is a submarine felsic vocanically-hosted hydrothermal area that hosts multiple vent fields locatedwithin several hundredmeters of one another but with different fluid chemistries, vent temperatures and morphologies. The total area of hydrothermal activity is estimated to be 20,279m**2. Themicrobathymetrymaps combinedwith the ROV video observations allow for precise high-resolution mapping estimates of the areal extents of hydrothermal activity.We find the distribution of hydrothermal fields in the PACManus area is primarily controlled by volcanic features that include lava domes, thick andmassive blocky lava flows, breccias and feeder dykes. Spatial variation in the permeability of local volcanic facies appears to control the distribution of venting within a field.We define a three-stage chronological sequence for the volcanic evolution of the PACManus based on lava flow morphology, sediment cover and lava SiO2 concentration. In Stage-1, sparsely to moderately porphyritic dacite lavas (68-69.8 wt.% SiO2) erupted to form domes or cryptodomes. In Stage-2, aphyric lava with slightly lower SiO2 concentrations (67.2-67.9 wt.% SiO2) formed jumbled and pillowed lava flows. In the most recent phase Stage-3, massive blocky lavaswith 69 to 72.5wt.% SiO2were erupted throughmultiple vents constructing a volcanic ridge identified as the PACManus neovolcanic zone. The transition between these stages may be gradual and related to progressive heating of a silicic magma following a recharge event of hot, mantle-derived melts.
    Schlagwort(e): 193-1188A; 193-1189A; 193-1190C; 193-1191A; BAMBUS; Bismarck Sea; CONDRILL; Date/Time of event; DRILL; Drilling/drill rig; Eastern Manus Basin; Electron microprobe JEOL JXA 8900R; Event label; J2-208; J2-209; J2-210; J2-211; J2-212; J2-213; J2-214; J2-216; J2-222; Joides Resolution; Latitude of event; Leg193; Location; Longitude of event; MAGELLAN-06; Manus Basin; Melville; Method/Device of event; MGLN06MV; Potassium oxide and Sodium oxide; Reference of data; Remote operated vehicle; Remote operated vehicle Jason II; ROV; ROVJ; Sample code/label; Silicon dioxide; SO166; SO166_58GTV; SO216; SO216-41-1; SO216-43-1; Sonne; Television-Grab; TVG
    Materialart: Dataset
    Format: text/tab-separated-values, 116 data points
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2024-02-02
    Beschreibung: The effect of volcanic activity on submarine hydrothermal systems has been well documented along fast- and intermediate-spreading centers but not from slow-spreading ridges. Indeed, volcanic eruptions are expected to be rare on slow-spreading axes. Here we report the presence of hydrothermal venting associated with extremely fresh lava flows at an elevated, apparently magmatically robust segment center on the slow-spreading southern Mid-Atlantic Ridge near 5°S. Three high-temperature vent fields have been recognized so far over a strike length of less than 2 km with two fields venting phase-separated, vapor-type fluids. Exit temperatures at one of the fields reach up to 407°C, at conditions of the critical point of seawater, the highest temperatures ever recorded from the seafloor. Fluid and vent field characteristics show a large variability between the vent fields, a variation that is not expected within such a limited area. We conclude from mineralogical investigations of hydrothermal precipitates that vent-fluid compositions have evolved recently from relatively oxidizing to more reducing conditions, a shift that could also be related to renewed magmatic activity in the area. Current high exit temperatures, reducing conditions, low silica contents, and high hydrogen contents in the fluids of two vent sites are consistent with a shallow magmatic source, probably related to a young volcanic eruption event nearby, in which basaltic magma is actively crystallizing. This is the first reported evidence for direct magmatic-hydrothermal interaction on a slow-spreading mid-ocean ridge.
    Schlagwort(e): DERIDGE; From Mantle to Ocean: Energy-, Material- and Life-cycles at Spreading Axes; M64/1; M64/1-114-ROV; M64/1-123-ROV; M64/1-124-GTV; M64/1-125-ROV; M64/1-130-ROV; M64/1-139-GTV; M64/1-141-ROV; M64/1-146-ROV; M68/1; M68/1-03-ROV; M68/1-07-ROV; M68/1-12-ROV; M68/1-20-ROV; MARSUED2; MARSUED3; Mephisto; Meteor (1986); Mid-Atlantic Ridge at 4-11°S; MULT; Multiple investigations; Remote operated vehicle; ROV; Shrimp_Farm; Sister_Peak; Tannenbaum; Television-Grab; TVG; Two_Boats
    Materialart: Dataset
    Format: application/zip, 3 datasets
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Supplement to: Feseker, Tomas; Boetius, Antje; Wenzhöfer, Frank; Blandin, Jérome; Olu, Karine; Yoerger, Dana; Camilli, Rich; German, Christopher R; de Beer, Dirk (2014): Eruption of a deep-sea mud volcano triggers rapid sediment movement. Nature Communications, 5, 5385, https://doi.org/10.1038/ncomms6385
    Publikationsdatum: 2024-03-13
    Beschreibung: Submarine mud volcanoes are considered an important source of methane to the water column. However, the temporal variability of their fluid transport including mud and methane emissions is largely unknown. Assuming that this transport was continuous and at steady state, methane emissions were previously proposed to result from a dynamic equilibrium between upward migration and consumption at the seabed by methane-consuming microbes. Here we have investigated non-steady state situations of vigorous mud movements and their reflection in fluid flow, seabed temperature and bathymetry. Time series of pressure, temperature, pH and seafloor photography were collected by a benthic observatory (LOOME) for 431 days at the active Håkon Mosby mud volcano. These new data document eruptions, which were accompanied by pulses of hot subsurface fluids and triggered rapid sediment uplift and lateral movement, as well as emissions of free gas.
    Schlagwort(e): ESONET; European Seafloor Observatory Network
    Materialart: Dataset
    Format: application/zip, 6 datasets
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...