GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Elsevier  (1)
  • Public Library of Science  (1)
Document type
Publisher
Years
  • 1
    Publication Date: 2020-02-06
    Description: The Southwest Indian Ridge is an ultraslow-spreading mid-ocean ridge with numerous poorly-explored seamounts. The benthic fauna of seamounts are thought to be highly heterogeneous, within even small geographic areas. Here we report observations from a two-year opportunistic experiment, which was comprised of two deployments of mango wood and whale bones. One was deployed at 732 m on Coral Seamount (~32 °S) and the other at 750 m on Atlantis Bank (~41 °S), two areas with little background faunal knowledge and a significant distance from the continental shelf. The packages mimic natural organic falls, large parcels of food on the deep-sea floor that are important in fulfilling the nutritional needs and providing shelter and substratum for many deep-sea animals. A large number of species colonised the deployments: 69 species at Coral Seamount and 42 species at Atlantis Bank. The two colonising assemblages were different, however, with only 11 species in common. This is suggestive of both differing environmental conditions and potentially, barriers to dispersal between these seamounts. Apart from Xylophaga and Idas bivalves, few organic-fall specialists were present. Several putative new species have been observed, and three new species have been described from the experiments thus far. It is not clear, however, whether this is indicative of high degrees of endemism or simply a result of under-sampling at the regional level.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: © The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS Biology 10 (2012): e1001234, doi:10.1371/journal.pbio.1001234.
    Description: Since the first discovery of deep-sea hydrothermal vents along the Galápagos Rift in 1977, numerous vent sites and endemic faunal assemblages have been found along mid-ocean ridges and back-arc basins at low to mid latitudes. These discoveries have suggested the existence of separate biogeographic provinces in the Atlantic and the North West Pacific, the existence of a province including the South West Pacific and Indian Ocean, and a separation of the North East Pacific, North East Pacific Rise, and South East Pacific Rise. The Southern Ocean is known to be a region of high deep-sea species diversity and centre of origin for the global deep-sea fauna. It has also been proposed as a gateway connecting hydrothermal vents in different oceans but is little explored because of extreme conditions. Since 2009 we have explored two segments of the East Scotia Ridge (ESR) in the Southern Ocean using a remotely operated vehicle. In each segment we located deep-sea hydrothermal vents hosting high-temperature black smokers up to 382.8°C and diffuse venting. The chemosynthetic ecosystems hosted by these vents are dominated by a new yeti crab (Kiwa n. sp.), stalked barnacles, limpets, peltospiroid gastropods, anemones, and a predatory sea star. Taxa abundant in vent ecosystems in other oceans, including polychaete worms (Siboglinidae), bathymodiolid mussels, and alvinocaridid shrimps, are absent from the ESR vents. These groups, except the Siboglinidae, possess planktotrophic larvae, rare in Antarctic marine invertebrates, suggesting that the environmental conditions of the Southern Ocean may act as a dispersal filter for vent taxa. Evidence from the distinctive fauna, the unique community structure, and multivariate analyses suggest that the Antarctic vent ecosystems represent a new vent biogeographic province. However, multivariate analyses of species present at the ESR and at other deep-sea hydrothermal vents globally indicate that vent biogeography is more complex than previously recognised.
    Description: The ChEsSo research programme was funded by a NERC Consortium Grant (NE/DO1249X/1) and supported by the Census of Marine Life and the Sloan Foundation, and the Total Foundation for Biodiversity (Abyss 2100)(SVTH) all of which are gratefully acknowledged. We also acknowledge NSF grant ANT-0739675 (CG and TS), NERC PhD studentships NE/D01429X/1(LH, LM, CNR), NE/H524922/1(JH) and NE/F010664/1 (WDKR), a Cusanuswerk doctoral fellowship, and a Lesley & Charles Hilton-Brown Scholarship, University of St. Andrews (PHBS).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...