GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    American Chemistry Society
    In:  Environmental Science & Technology, 26 . pp. 5441-5446.
    Publication Date: 2017-03-07
    Description: Direct oceanic disposal of fossil fuel CO2 is being considered as a possible means to moderate the growth rate of CO2 in the atmosphere. We have measured the rise rate and dissolution rate of freely released CO2 droplets in the open ocean to provide fundamental data for carbon sequestration options. A small amount of liquid CO2 was released at 800 m, at 4.4 degrees C, and the rising droplet stream was imaged with a HDTV camera carried on a remotely operated vehicle. The initial rise rate for 0.9-cm diameter droplets was 10 cm/s at 800 m, and the dissolution rate was 3.0 micromol cm(-2) s(-1). While visual contact was maintained for 1 h and over a 400 m ascent, 90% of the mass loss occurred within 30 min over a 200 m ascent above the release point. Images of droplets crossing the liquid-gas-phase boundary showed formation of a gas head, pinching off of a liquid tail, and rapid gas bubble separation and dissolution.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...