GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Zeitschrift für die chemische Industrie 82 (1970), S. 395-395 
    ISSN: 0044-8249
    Keywords: Chemistry ; General Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-06-28
    Description: Extensive ROV-based sampling and exploration of the seafloor was conducted along an eroded transform-parallel fault scarp on the northeastern side of the Guaymas Basin in the Gulf of California to observe the nature of fluids venting from the seafloor, measure the record left by methane-venting on the carbonates from this area, and determine the association with gas hydrate. One gas vent vigorous enough to generate a water-column gas plume traceable for over 800 m above the seafloor was found to emanate from a ∼10-cm-wide orifice on the eroded scarp face. Sediment temperature measurements and topography on a sub-bottom reflector recorded in a transform-parallel seismic reflection profile identified a subsurface thermal anomaly beneath the gas vent. Active chemosynthetic biological communities (CBCs) and extensive authigenic carbonates that coalesce into distinct chemoherm structures were encountered elsewhere along the eroded transform-parallel scarp. The carbon isotopic composition of methane bubbles flowing vigorously from the gas vent (−53.6±0.8‰ PDB) is comparable to methane found in sediment cores taken within the CBCs distributed along the scarp (−51.9±8.1‰ PDB). However, the δ13C value of the CO2 in the vent gas (+12.4±1.1‰ PDB) is very distinct from those for dissolved inorganic carbon (DIC) (−35.8‰ to −2.9‰ PDB) found elsewhere along the scarp, including underneath CBCs. The δ13C values of the carbonate-rich sediments and rocks exposed on the seafloor today also span an unusually large range (−40.9‰ to +12.9‰ PDB) and suggest two distinct populations of authigenic carbonate materials were sampled. Unconsolidated sediments and some carbonate rocks, which have lithologic evidence for near-seafloor formation, have negative δ13C values, while carbonate rocks that clearly formed in the subsurface have positive δ13C values (up to +23.0‰) close to that measured for CO2 in the vent gas. There appears to be two carbon sources for the authigenic carbonates: (1) deeply-sourced, isotopically heavy CO2 (∼+12‰); and (2) isotopically light DIC derived from local anaerobic oxidation of methane at the sulfate–methane interface in the shallow subsurface. Addition of isotopically light methane-derived carbon at the seafloor may completely mask the isotopically heavy CO2 signature (+12.4‰) in the underlying sediments. Thus, the authigenic carbonates may have formed from the same methane- and carbon dioxide-bearing fluid, but under different migration and alteration conditions, depending on how it migrated through the sediment column.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-09-30
    Description: Free-ocean CO2 enrichment (FOCE) systems are designed to assess the impact of ocean acidification on biological communities in situ for extended periods of time (weeks to months). They overcome some of the drawbacks of laboratory experiments and field observations by enabling (1) precise control of CO2 enrichment by monitoring pH as an offset of ambient pH, (2) consideration of indirect effects such as those mediated through interspecific relationships and food webs, and (3) relatively long experiments with intact communities. Bringing perturbation experiments from the laboratory to the field is, however, extremely challenging. The main goal of this paper is to provide guidelines on the general design, engineering, and sensor options required to conduct FOCE experiments. Another goal is to introduce xFOCE, a community-led initiative to promote awareness, provide resources for in situ perturbation experiments, and build a user community. Present and existing FOCE systems are briefly described and examples of data collected presented. Future developments are also addressed as it is anticipated that the next generation of FOCE systems will include, in addition to pH, options for oxygen and/or temperature control. FOCE systems should become an important experimental approach for projecting the future response of marine ecosystems to environmental change.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Chemistry Society
    In:  Environmental Science & Technology, 26 . pp. 5441-5446.
    Publication Date: 2017-03-07
    Description: Direct oceanic disposal of fossil fuel CO2 is being considered as a possible means to moderate the growth rate of CO2 in the atmosphere. We have measured the rise rate and dissolution rate of freely released CO2 droplets in the open ocean to provide fundamental data for carbon sequestration options. A small amount of liquid CO2 was released at 800 m, at 4.4 degrees C, and the rising droplet stream was imaged with a HDTV camera carried on a remotely operated vehicle. The initial rise rate for 0.9-cm diameter droplets was 10 cm/s at 800 m, and the dissolution rate was 3.0 micromol cm(-2) s(-1). While visual contact was maintained for 1 h and over a 400 m ascent, 90% of the mass loss occurred within 30 min over a 200 m ascent above the release point. Images of droplets crossing the liquid-gas-phase boundary showed formation of a gas head, pinching off of a liquid tail, and rapid gas bubble separation and dissolution.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-05-24
    Description: The scientific community is engaged in a lively debate over whether and how venting from the gas-hydrate reservoir and the Earth’s climate is connected. The various scenarios which have been proposed are based on the following assumptions: the inventory of methane gas-hydrate deposits is locally enormous, the stability of marine gas-hydrate deposits can easily be perturbed by temperature and pressure changes, enough methane can be released from these deposits to contribute adequate volumes of this isotopically distinct greenhouse gas to alter the composition of oceanic or atmospheric methane reservoirs, and the mechanisms exist for the transfer of methane from deeper geologic reservoirs to the ocean and/or atmosphere. However, some potential transfer mechanisms have been difficult to evaluate. Here, we consider the possibility of marine slumping as a mechanism to transfer methane carbon from gas hydrates within the seafloor into the ocean and atmosphere. Our analyses and field experiments indicate that large slumps could release volumetrically significant quantities of solid gas hydrates which would float upwards in the water column. Large pieces of gas hydrate would reach the upper layers of the ocean before decomposing, and some of the methane would be directly injected into the atmosphere.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 29 (22). p. 2081.
    Publication Date: 2018-02-20
    Description: We report on controlled experiments to document the fate of naturally occurring methane hydrate released from the sea floor (780 m, 4.3°C) by remotely operated vehicle (ROV) disturbance. Images of buoyant sediment-coated solids rising (∼0.24 m/s) from the debris cloud, soon revealed clear crystals of methane hydrate as surficial material sloughed off. Decomposition and visible degassing began close to the predicted phase boundary, yet pieces initially of ∼0.10 m size easily survived transit to the surface ocean. Smaller pieces dissolved or dissociated before reaching the surface ocean, yet effectively transferred gas to depths where atmospheric ventilation times are short relative to methane oxidation rates.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-09-27
    Description: To help constrain models involving the chemical stability and lifetime of gas clathrate hydrates exposed at the seafloor, dissolution rates of pure methane and carbon-dioxide hydrates were measured directly on the seafloor within the nominal pressure-temperature (P/T) range of the gas hydrate stability zone. Other natural boundary conditions included variable flow velocity and undersaturation of seawater with respect to the hydrate-forming species. Four cylindrical test specimens of pure, polycrystalline CH4 and CO2 hydrate were grown and fully compacted in the laboratory, then transferred by pressure vessel to the seafloor (1028 m depth), exposed to the deep ocean environment, and monitored for 27 hours using time-lapse and HDTV cameras. Video analysis showed diameter reductions at rates between 0.94 and 1.20 μm/s and between 9.0 and 10.6 · 10−2 μm/s for the CO2 and CH4 hydrates, respectively, corresponding to dissolution rates of 4.15 ± 0.5 mmol CO2/m2s and 0.37 ± 0.03 mmol CH4/m2s. The ratio of the dissolution rates fits a diffusive boundary layer model that incorporates relative gas solubilities appropriate to the field site, which implies that the kinetics of the dissolution of both hydrates is diffusion-controlled. The observed dissolution of several mm (CH4) or tens of mm (CO2) of hydrate from the sample surfaces per day has major implications for estimating the longevity of natural gas hydrate outcrops as well as for the possible roles of CO2 hydrates in marine carbon sequestration strategies.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...