GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Millersville, PA :Materials Research Forum LLC,
    Keywords: Water-Electrolysis. ; Electronic books.
    Description / Table of Contents: Aiming at the generation of hydrogen from water, electrochemical water splitting represents a promising clean technology for generating a renewable energy resource. Keywords: Electrochemical Water Splitting, Renewable Energy Resource, Electrocatalysts, Oxygen Evolution Reaction (OER), Noble Metal Catalysts, Earth-Abundant Metal Catalysts, MOF Catalysts, Carbon-based Nanocatalysts, Polymer Catalysts, Transition Metal-based Electrocatalysts, Fe-based Electrocatalysts, Co-based Electrocatalysts, Ni-based Electrocatalysts, Metal Free Catalysts, Transition-Metal Chalcogenides, Prussian Blue Analogues.
    Type of Medium: Online Resource
    Pages: 1 online resource (251 pages)
    Edition: 1st ed.
    ISBN: 9781644900451
    Series Statement: Materials Research Foundations Series ; v.59
    DDC: 665.81
    Language: English
    Note: Intro -- front-matter -- Table of Contents -- Preface -- 1 -- Transition Metal-Based Electrocatalysts for Oxygen-Evolution Reaction beyond Ni, Co, Fe -- 1. Introduction -- 2. Towards transition metal alloys beyond Ni, Co and Fe applied for OER -- 3. Metal oxides for OER beyond Ni, Co, and Fe -- 3.1 Transition metal binary oxide-based electrocatalyst -- 3.2 Perovskites oxides electrocatalysts -- 4. Transition-metals carbides, nitrides, and phosphides applied for OER -- 4.1 Carbides -- 4.2 Nitrides -- 4.3 Phosphides -- Conclusions -- References -- 2 -- Fe-Based Electrocatalysts for Oxygen-Evolution Reaction -- 1. Introduction -- 2. Mechanism of oxygen evolution reaction -- 3. Fe-based catalysts for OER -- 3.1 Fe-based oxides catalysts -- 3.2 Fe-based (oxy)hydroxides catalysts -- 3.3 Fe-based lamellar layered double hydroxide catalysts -- 3.4 Other Fe-based composites -- Conclusions and Outlook -- References -- 3 -- Co-Based Electrocatalysts for Hydrogen-Evolution Reaction -- 1. Introduction -- 2. Various Co-based electrocatalysts -- 2.1 Co metal, alloy, and their composites -- 2.2 Co nitrides -- 2.3 Co phosphides -- 2.4 Co oxide -- 2.5 Cobalt (Co) sulfides -- 2.6 Cobal selenides -- 2.7 Binary nonmetal cobalt compounds -- Conclusions and outlook -- References -- 4 -- Metal Free Catalysts for Water Splitting -- 1. Introduction -- 1.1 Hydrogen evolution reaction (HER) -- 1.2 Oxygen evolution reaction (OER) -- 2. Factors affecting the efficiency of electrochemical water splitting -- 3. Electrochemical matrices used for determining talent of the catalyst -- 4. Electrocatalysts for overall water splitting -- 5. Carbon based metal free catalyst -- 5.1 Graphene based electrocatalysts for water splitting -- 5.2 Carbon nanotube based electrocatalysts for water splitting. , 5.3 Graphitic carbon nitride (g-C3N4) based electrocatalysts for overall water splitting -- 6. Future aspects and outlook -- Reference -- 5 -- Ni-Based Electrocatalyst for Full Water Splitting -- 1. Introduction -- 2. Water splitting -- 2.1 Brief history and basics of water splitting -- 2.2 Few parameters related to t oxygen evolution reaction, hydrogen evolution reaction and catalytic activity -- 2.3 Mechanism of electrochemical water splitting -- 2.3.1 Hydrogen evolution reaction (HER) -- 2.3.2 Oxygen evolution reaction (OER) -- 2.4 Recent advances on materials and performance of Ni based materials for overall water splitting -- 2.4.1 Ni- based oxides and hydroxides -- 2.4.2 Ni-based phosphides -- 2.4.3 Ni-based nitrides -- 2.4.4 Ni-based sulfides -- 2.4.4 Ni-based selenides -- Conclusions -- Acknowledgement -- References -- 6 -- Transition-Metal Chalcogenides for Oxygen-Evolution Reaction -- 1. Introduction -- 1.1 Mechanism of oxygen evolution reaction (OER) -- 1.2 Kinetic parameters used to find the suitable catalysts for OER -- 1.2.1 Overpotential -- 1.2.2. Exchange current density -- 1.2.3 Tafel equation and Tafel plot -- 1.2.4 Electrochemical active surface area (ECSA) -- 1.2.5 Faraday efficiency (FE) -- 1.3 Experimental methods used to study the OER behavior and stability of catalysts -- 2. Transition metal chalcogenides as replacement of state-of-art catalyst for OER -- 2.1 Transition metal sulphide for oxygen evolution reaction -- 2.2 Transition metal selenide for oxygen evolution reaction -- 2.3 Transition metal telluride for oxygen evolution reaction -- Conclusion and Future prospective -- References -- 7 -- Interface-Engineered Electrocatalysts for Water Splitting -- 1. The surface/interface mechanism in photoelectrochemical water splitting. , 2. Enhanced photoelectrochemical water splitting performance by interface-engineered electrocatalysts -- 2.1 Impurity doping -- 2.2 Surface plasmon resonance effect -- 2.3 Z-scheme system -- References -- 8 -- Application of Prussian Blue Analogues and Related Compounds for Water Splitting -- 1. Introduction -- 2. The coordination chemistry of Prussian blue analogues and other metal cyanides -- 3. Crystal structure of Prussian blue analogues and related coordination polymers -- 4. Photo-induced charge transfer in Prussian blue analogues and related solids -- 5. Electrochemical behavior of PBAs in aqueous solutions -- 6. The water splitting reaction using transition metal cyanides -- 6.1 Oxygen evolution reaction (OER) -- 6.2 Hydrogen evolution reaction (HER) -- 6.3 Use as co-catalyst in photoelectrochemical cells -- Concluding remarks -- Acknowledgments -- References -- 9 -- Ni-Based Electrocatalysts for Oxygen Evolution Reaction -- 1. Introduction -- 2. The mechanism involved in oxygen evolution reaction and judging parameters -- 3. Nickel based OER catalysts -- 3.1 Ni-hydroxide based OER catalysts -- 3.2 Ni-oxide based OER catalysts -- 3.3 Ni-sulphides and selenides for OER -- Conclusion -- Acknowledgements -- References -- back-matter -- Keyword Index -- About the Editors.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...