GLORIA

GEOMAR Library Ocean Research Information Access

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Online-Ressource
    Online-Ressource
    Newark :John Wiley & Sons, Incorporated,
    Schlagwort(e): Polymerization -- Handbooks, manuals, etc. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (772 pages)
    Ausgabe: 2nd ed.
    ISBN: 9783527694020
    DDC: 660.299
    Sprache: Englisch
    Anmerkung: Cover -- Contents -- Preface -- List of Contributors -- List of Abbreviations -- Chapter 1 General Ring-Closing Metathesis -- 1.1 Introduction -- 1.2 Carbocycles (Introduction) -- 1.2.1 Small-Sized Carbocycles -- 1.2.2 Medium-Sized Carbocycles -- 1.2.3 Spiro Carbocycles -- 1.3 Synthesis of Bridged Bicycloalkenes -- 1.4 Synthesis of Heterocycles Containing Si, P, S, or B -- 1.4.1 Si-Heterocycles -- 1.4.2 P-Heterocycles -- 1.4.3 S-Heterocycles -- 1.4.4 B-Heterocycles -- 1.5 Synthesis of O-Heterocycles -- 1.5.1 Small and Medium-Size Cyclic Ethers -- 1.5.2 Polycyclic Ethers -- 1.6 Synthesis of N-Heterocycles -- 1.6.1 N-Heterocycles -- 1.6.2 Small and Medium-Sized Lactams -- 1.7 Synthesis of Cyclic Conjugated Dienes -- 1.8 Alkyne Metathesis -- 1.9 Enyne Metathesis -- 1.9.1 General Enyne Metathesis -- 1.9.2 Dienyne Metathesis -- 1.10 Tandem Processes -- 1.10.1 Tandem ROM/RCM -- 1.10.2 Other Tandem RCMs -- 1.11 Synthesis of Macrocycles -- 1.11.1 Macrocycles -- 1.11.2 Macrolactones -- 1.11.3 Macrolactams -- 1.12 RCM and Isomerization via Ru-H -- 1.13 Relay RCM (RRCM) -- 1.14 Z-Selective RCM -- 1.14.1 Substrate-Controlled Z-Selective RCM -- 1.14.2 Catalyst-Controlled Z-Selective RCM -- 1.15 Enantioselective RCM -- 1.16 Conclusion -- Acknowledgments -- References -- Chapter 2 Cross-Metathesis -- 2.1 Early Examples Using Well-Defined Molybdenum and Ruthenium Catalysts -- 2.2 The General Model for Selectivity in CM Reactions -- 2.3 Definition of Cross-Metathesis Reaction Categories and Chapter Organization -- 2.4 Hydrocarbons -- 2.4.1 Alkane Extensions -- 2.4.2 Unsaturated Hydrocarbons, Including Styrene -- 2.4.3 Ethylene Cross-Metathesis -- 2.5 Boron -- 2.6 Nitrogen -- 2.6.1 Amines -- 2.6.2 Amines as CM Partners in Heterocycle Syntheses -- 2.6.3 Acrylonitrile and Other Nitrile-Based CM Applications -- 2.6.4 Other Nitrogenous Substrates -- 2.7 Oxygen. , 2.7.1 Primary Allylic Alcohols and Derivatives -- 2.7.2 Secondary Allylic Alcohols and Derivatives -- 2.7.3 Tertiary Allylic Alcohols and Derivatives -- 2.7.4 Homoallylic Alcohols and Derivatives -- 2.7.5 Vinyl Ethers -- 2.7.6 Acrolein, Crotonaldehyde, and Methacrolein -- 2.7.7 Methyl Vinyl Ketone and Related Systems -- 2.7.8 Acrylic Acid -- 2.7.9 Acrylic Acid Derivatives, Including Esters, Thioesters, and Amides -- 2.8 Halides -- 2.9 Phosphorus -- 2.10 Sulfur -- 2.11 Fragment Coupling Reactions -- 2.11.1 Acetogenins -- 2.11.2 Cross-Metathesis Selectivity -- 2.11.3 Tuning Metathesis Selectivity -- 2.11.4 CM as an Alternative Coupling Strategy -- 2.11.5 CM-Based Analog Synthesis -- 2.11.6 Polyene Metathesis -- 2.11.7 Cross-Metathesis Reaction Optimization: Pinnaic Acid -- 2.12 Conclusions -- References -- Chapter 3 Vignette: Extending the Application of Metathesis in Chemical Biology - The Development of Site-Selective Peptide and Protein Modifications -- 3.1 Introduction -- 3.2 Cross-Metathesis Methodology Studies in Aqueous Media -- 3.2.1 Allyl Sulfides are Reactive Substrates in Olefin Metathesis -- 3.2.2 Sulfur-Relayed Cross-Metathesis -- 3.2.3 Application of Aqueous Metathesis of Allyl Sulfides in Synthesis -- 3.2.4 Cross-Metathesis of Se-Allyl Selenocysteine -- 3.3 Strategies for Allyl Chalogenide Incorporation into Proteins -- 3.3.1 Conjugate Addition to Dehydroalanine -- 3.3.2 Allyl Selenenylsulfide Rearrangement -- 3.3.3 S-Allyl Cysteine as a Methionine Surrogate -- 3.3.4 Other Genetic Incorporation Strategies -- 3.4 Olefin Metathesis on Proteins -- 3.4.1 Magnesium(II) is an Essential Additive in Olefin Metathesis on Proteins -- 3.4.2 Further Investigation of Allyl Ethers and Allyl Sulfides in RCM of Proteins and Peptides -- 3.4.3 Expanding the Scope of Cross-Metathesis on Proteins -- 3.5 Outlook -- References. , Chapter 4 Ruthenium-Catalyzed Tandem Metathesis/Non-Metathesis Processes -- 4.1 Introduction -- 4.2 Metathesis/Isomerization -- 4.2.1 RCM/Isomerization -- 4.2.2 Isomerization/RCM -- 4.2.3 CM/Isomerization -- 4.2.4 Enyne Metathesis/Isomerization -- 4.2.5 Isomerization/Enyne Metathesis -- 4.3 Metathesis/Hydrogenation -- 4.3.1 RCM/Hydrogenation -- 4.3.2 CM/Hydrogenation -- 4.4 Metathesis/Oxidation -- 4.4.1 RCM/Oxidative Aromatization -- 4.4.2 RCM/Allylic Oxidation -- 4.4.3 Metathesis/Hydroxylation -- 4.5 Metathesis/Cyclization -- 4.5.1 CM/aza-Michael Reaction -- 4.5.2 CM/oxa-Michael Reaction -- 4.5.3 CM/Conjugate Addition -- 4.5.4 CM/Conjugate Addition/Cyclization -- 4.5.5 RCM/Isomerization/Cyclization -- 4.6 Metathesis/Atom-Transfer Radical Addition -- 4.6.1 RCM/Kharasch Addition -- 4.6.2 CM/Kharasch Addition -- 4.6.3 Enyne Metathesis/Kharasch Addition -- 4.7 Metathesis/Rearrangement -- 4.7.1 Claisen Rearrangement/RCM -- 4.8 Metathesis/Cyclopropanation -- 4.8.1 Cyclopropanation/RCM -- 4.8.2 Enyne Metathesis/Cyclopropanation -- 4.8.3 CM/Cyclopropanation -- 4.8.4 RCM/Isomerization/Cyclopropanation -- 4.9 Metathesis/Miscellaneous -- 4.9.1 CM/Wittig Olefination -- 4.9.2 CM/Cycloaddition (Hetero-Pauson-Khand Reaction) -- 4.9.3 Enyne Metathesis/Hydrovinylation -- 4.9.4 Allylic Carboxylation/RCM -- 4.10 Conclusions -- References -- Chapter 5 Enyne Metathesis -- 5.1 Introduction -- 5.2 Enyne Metathesis -- 5.2.1 Brief Historical Background (1985-2002) -- 5.2.2 Mechanistic Studies and Selectivity Issues -- 5.2.2.1 Dichotomy of Mechanism - "Ene-First" or "Yne-First -- 5.2.2.2 Regioselectivity in Enyne Ring-Closing Metathesis -- 5.2.2.3 Regio and Stereoselectivity in Enyne Cross Metathesis -- 5.2.3 Enyne Metathesis and Metallotropic [1, 3] Shift (M& -- M) -- 5.2.4 Other Metal-Catalyzed Enyne Metatheses (Skeletal Reorganizations) -- 5.2.4.1 Introduction. , 5.2.4.2 Formation of Type-I exo Products -- 5.2.4.3 Formation of Type-II exo Products -- 5.2.4.4 Formation of endo Products -- 5.2.4.5 Miscellaneous -- 5.3 Strategic Application of Enyne Metathesis in Organic Synthesis -- 5.3.1 Enyne Metathesis -- 5.3.1.1 Enyne RCM in Synthesis of Carbocycles and Heterocycles -- 5.3.1.2 Enyne CM -- 5.3.1.3 Enyne Metathesis in Natural Products Synthesis -- 5.3.2 Tandem Enyne Metathesis -- 5.3.2.1 Dienyne Metathesis -- 5.3.2.2 Enyne RCM-CM Sequence -- 5.3.2.3 Enyne Ring-Rearrangement Metathesis (RRM) -- 5.3.2.4 Multiple Enyne Metathesis -- 5.3.2.5 Enyne CM-RCM Sequence -- 5.3.3 Tandem Enyne Metathesis-Diels-Alder Reaction Sequences -- 5.3.3.1 Enyne Metathesis-Intermolecular Diels-Alder Reaction -- 5.3.3.2 Enyne Metathesis-Intramolecular Diels-Alder Reaction -- 5.3.4 Other Tandem Enyne Metathesis Sequences -- 5.4 Perspective -- References -- Chapter 6 Alkyne Metathesis -- 6.1 Introduction -- 6.2 Background Information -- 6.3 Molybdenum Alkylidyne Catalysts with Silanolate Ligands -- 6.3.1 General -- 6.3.2 Representative Procedure: Ring-Closing Alkyne Metathesis with the Aid of a Bench-Stable Molybdenum Alkylidyne Adduct -- 6.3.3 Molybdenum Nitrides as Precatalysts -- 6.3.4 Structural and Mechanistic Aspects -- 6.4 Other Catalytically Active Molybdenum Alkylidyne Complexes -- 6.5 Novel Tungsten Alkylidyne Catalysts -- 6.6 Basic Types of Applications -- 6.6.1 Alkyne Self-Metathesis and Cyclo-Oligomerization Reactions -- 6.6.2 Oligomerization and Polymerization Reactions -- 6.6.3 Alkyne Cross Metathesis -- 6.6.4 Ring-Closing Alkyne Metathesis -- 6.6.5 Metathesis of Terminal Alkynes -- 6.7 Selected Applications -- 6.7.1 Organometallic Substrates -- 6.7.2 Olfactory Macrocycles -- 6.7.3 Cruentaren A -- 6.7.4 Haliclonacyclamine C -- 6.7.5 Nakadomarin A -- 6.7.6 Prostaglandins and Oxylipins -- 6.7.7 Neurymenolide A. , 6.7.8 Tulearin C -- 6.7.9 Stereoselective Syntheses of 1,3-Dienes by RCAM/Semireduction: Total Syntheses of Latrunculin, Lactimidomycin, and Leiodermatolide -- 6.7.10 Amphidinolide V -- 6.7.11 Citreofuran -- 6.7.12 Polycavernoside A -- 6.7.13 Amphidinolide F -- 6.7.14 Spirastrellolide F -- 6.8 Conclusions -- References -- Chapter 7 Catalyst-Controlled Stereoselective Olefin Metathesis -- 7.1 Introduction -- 7.2 Enantioselective Ring-Opening/Cross-Metathesis (EROCM) -- 7.2.1 Reactions with Chiral Ru Carbenes -- 7.2.2 Reactions with Chiral Mo-Based Biphenolates -- 7.2.3 Reactions of Azabicycles: Ru- versus Mo-Based Catalysts -- 7.2.4 Application to Enantioselective Synthesis of a Natural Product -- 7.3 Enantioselective Ring-Opening/Ring-Closing Metathesis (ERORCM) -- 7.4 Enantioselective Ring-Closing Metathesis (ERCM) -- 7.4.1 Reactions with Chiral Ru-Based Complexes -- 7.4.2 ERCM Reactions with Chiral Mo-Based Diolates -- 7.4.2.1 Synthesis of N-Heterocycles -- 7.4.2.2 Synthesis of Cyclic Alkenyl Ethers -- 7.4.2.3 Synthesis of Cyclic Alkenes with a P-Stereogenic Center -- 7.4.2.4 Control of Planar Stereogenicity -- 7.4.3 Reactions with Monopyrrolide-Aryloxide (MAP) Stereogenic-at-Mo Complexes -- 7.4.3.1 Catalyst Design, ERCM Reactions, and Application to Total Synthesis of Quebrachamine -- 7.4.3.2 Enantioselective Enyne RCM -- 7.5 Z-Selective Olefin Metathesis Reactions with Mo- and W-Based Complexes -- 7.5.1 Reactions with Chiral Mo-Based Diolates: Net Enantio- and Z-Selective Cross-Metathesis (CM) -- 7.5.2 Reactions with Mo- and W-Based Monopyrrolide Aryloxide (MAP) Complexes -- 7.5.2.1 Catalytic Enantio- and Z-Selective Ring-Opening/Cross-Metathesis (ROCM) -- 7.5.2.2 Catalytic Z-Selective Homo-Coupling -- 7.5.2.3 Catalytic Z-Selective Cross-Metathesis (CM) -- 7.5.2.4 Pure E-Alkenes by Catalytic Z-Selective Ethenolysis. , 7.5.2.5 Catalytic Z-Selective Macrocyclic Ring-Closing Metathesis (RCM).
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...