GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Newark :John Wiley & Sons, Incorporated,
    Keywords: Natural products -- Synthesis. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (414 pages)
    Edition: 1st ed.
    ISBN: 9783527629633
    DDC: 547.2
    Language: English
    Note: Intro -- Metathesis in Natural Product Synthesis: Strategies, Substrates and Catalysts -- Contents -- Foreword -- Preface -- List of Catalysts -- List of Contributors -- Abbreviations -- 1 Synthesis of Natural Products Containing Medium-size Carbocycles by Ring-closing Alkene Metathesis -- 1.1 Introduction -- 1.2 Formation of Five-membered Carbocycles by RCM -- 1.3 Formation of Six-membered Carbocycles by RCM -- 1.4 Formation of Seven-membered Carbocycles by RCM -- 1.5 Formation of Eight-membered Carbocycles by RCM -- 1.6 Formation of Nine-membered Carbocycles by RCM -- 1.7 Formation of 10-membered Carbocycles by RCM -- 1.8 Conclusion -- References -- 2 Natural Products Containing Medium-sized Nitrogen Heterocycles Synthesized by Ring-closing Alkene Metathesis -- 2.1 Introduction -- 2.2 Five-membered Nitrogen Heterocycles -- 2.2.1 Dihydropyrroles -- 2.2.2 Pyrrolidine Alkaloids -- 2.2.2.1 Pyrrolidines -- 2.2.2.2 Dipyrrolidines -- 2.2.2.3 Polyhydroxypyrrolidines -- 2.2.3 Indolizidine Alkaloids -- 2.2.3.1 Polycyclic Indolizidines -- 2.2.3.2 Polyhydroxyindolizidines -- 2.2.4 Pyrrolizidine Alkaloids -- 2.3 Six-membered Nitrogen Heterocycles -- 2.3.1 Piperidine Alkaloids -- 2.3.1.1 Piperidines -- 2.3.1.2 Piperidine Carboxylic Acids -- 2.3.1.3 Piperidones -- 2.3.1.4 Polyhydroxypiperidines -- 2.3.2 Indolizidine Alkaloids -- 2.3.3 Quinolizidine Alkaloids -- 2.4 Seven-membered Nitrogen Heterocycles -- 2.5 Eight-membered Nitrogen Heterocycles -- 2.6 Conclusion -- References -- 3 Synthesis of Natural Products Containing Medium-size Oxygen Heterocycles by Ring-closing Alkene Metathesis -- 3.1 Introduction -- 3.2 General RCM Approaches to Medium Rings -- 3.3 Laurencin -- 3.4 Eunicellins/Eleutherobin -- 3.5 Helianane -- 3.6 Octalactin A -- 3.7 Microcarpalide and the Herbarums -- 3.8 Marine Ladder Toxins -- 3.8.1 Ciguatoxin -- 3.8.2 Brevetoxin. , 3.8.3 Gambierol, Gambieric Acid, Olefinic-ester Cyclizations -- 3.9 Conclusion -- Acknowledgments -- References -- 4 Phosphorus and Sulfur Heterocycles via Ring-closing Metathesis: Application in Natural Product Synthesis -- 4.1 Introduction -- 4.2 Synthesis and Reactivity of Sultones Derived from RCM -- 4.3 Total Synthesis of the Originally Proposed Structure of (±)-Mycothiazole -- 4.4 Synthesis and Reactivity of Phosphates from RCM -- 4.5 Applications of Phosphate Tethers in the Synthesis of Dolabelide C -- 4.6 Conclusion -- Acknowledgment -- References -- 5 Synthesis of Natural Products Containing Macrocycles by Alkene Ring-closing Metathesis -- 5.1 Introduction -- 5.2 Organization of the Chapter -- 5.3 Macrocyclic Polyketides -- 5.3.1 Resorcinylic Macrolides -- 5.3.2 Salicylate Macrolides -- 5.3.3 Other Antibiotic Macrolides -- 5.3.4 Macrocyclic Musk -- 5.3.5 Epothilones -- 5.3.6 Amphidinolides -- 5.3.7 Other Polyketides -- 5.3.8 Natural Cyclophanes -- 5.4 Terpenoids -- 5.4.1 Diterpenoids -- 5.4.2 Macrocyclic Lipids -- 5.5 Macrocycles of Amino Acid Origin -- 5.5.1 Macrolactams -- 5.5.2 Cyclodepsipeptides -- 5.5.3 Alkaloids -- 5.6 Macrocyclic Glycolipids -- 5.7 Conclusions and Outlook -- References -- 6 Synthesis of Natural Products and Related Compounds Using Ene-Yne Metathesis -- 6.1 Introduction -- 6.2 Synthesis of Natural Products and Related Compounds Using Ene-yne Metathesis -- 6.3 Synthesis of Natural Products and Related Compounds Using Ene-yne Cross-metathesis (CM) -- 6.4 Synthesis of Natural Products Using Skeletal Reorganization -- References -- 7 Ring-closing Alkyne Metathesis in Natural Product Synthesis -- 7.1 Introduction -- 7.2 Alkyne Metathesis -- 7.2.1 Background to Alkyne Metathesis -- 7.3 Ring-closing Alkyne Metathesis -- 7.3.1 RCAM as a Synthetic Strategy -- 7.4 Applications of RCAM in Natural Product Synthesis. , 7.4.1 RCAM/Hydrogenation Strategies -- 7.4.1.1 Macrocyclic Musks -- 7.4.1.2 Prostaglandin Lactones -- 7.4.1.3 Sophorolipid Lactone -- 7.4.1.4 Epothilone A -- 7.4.1.5 Cruentaren A -- 7.4.1.6 Latrunculins A, B, C, M, and S -- 7.4.1.7 Myxovirescin A1 -- 7.4.2 RCAM and Alternative Alkyne Manipulations -- 7.4.2.1 Citreofuran -- 7.4.2.2 Amphidinolide V -- 7.5 Conclusions -- References -- 8 Temporary Silicon-Tethered Ring-Closing Metathesis Reactions in Natural Product Synthesis -- 8.1 Introduction -- 8.2 Temporary Silicon-Tethered Ring-Closing Metathesis Reactions -- 8.2.1 O-SiR2 -O Tethered Substrates: Symmetrical Silaketals -- 8.2.1.1 C2-Symmetrical Silaketals and Applications -- 8.2.1.2 Achiral and Racemic Silaketals -- 8.2.1.3 Related Applications and Developments -- 8.2.2 O-SiR2 -O Tethered Substrates: Unsymmetrical Silaketals -- 8.2.2.1 Spiroketals -- 8.2.2.2 Long-range Asymmetric Induction -- 8.2.2.3 Annonaceous Acetogenins -- 8.2.2.4 Trisubstituted Alkenes -- 8.2.2.5 Related Applications and Developments -- 8.2.3 Dienyne TST-RCM: Symmetrical and Unsymmetrical Silanes -- 8.2.3.1 Macrolide Antibiotics -- 8.2.4 O-SiR2 -C Tethered Substrates: Allyl and Vinylsiloxanes -- 8.2.4.1 Lignans from Allylsiloxanes -- 8.2.4.2 Z-Trisubstituted Alkenes from Allylsiloxanes -- 8.2.4.3 Di- and Trisubstituted Alkenes from Vinylsiloxanes -- 8.2.4.4 Related Applications and Developments -- 8.2.5 Enyne TST-RCM: Tri- and Tetrasubstituted Acyclic Dienes -- 8.2.5.1 Illudins -- 8.3 Conclusions and Outlook -- Acknowledgments -- References -- 9 Metathesis Involving a Relay and Applications in Natural Product Synthesis -- 9.1 Introduction -- 9.1.1 The Relay Concept -- 9.1.2 Basic Tenets of RCM -- 9.2 Early Relay Metathesis Discoveries -- 9.3 Examples of Relay Metathesis Directed at Targets Other than Natural Products. , 9.4 Examples of Relay Metathesis Motivated by Natural Product Synthesis -- 9.5 Examples of Relay Metatheses Thwarted in Achieving the Desired Outcome -- 9.5.1 Interference from a Truncation Event -- 9.5.2 Interference from Premature Macrocyclization -- 9.6 Conclusion -- Acknowledgments -- References -- 10 Cross-metathesis in Natural Products Synthesis -- 10.1 Introduction -- 10.2 Functionalization of Olefins -- 10.2.1 Cross-metathesis with Acrylate Derivatives -- 10.2.1.1 Acrylonitrile -- 10.2.1.2 Thioacrylates -- 10.2.1.3 Acrylic Acid -- 10.2.1.4 Acrylimides -- 10.2.1.5 Acrylates -- 10.2.1.6 Acrolein -- 10.2.1.7 Vinyl Ketones -- 10.2.2 Cross-metathesis with Vinyl Derivatives -- 10.2.2.1 Vinyl Boronates -- 10.2.2.2 Vinyl Silanes -- 10.2.3 Cross-metathesis with Allylic Derivatives -- 10.2.3.1 Allyl Silanes -- 10.2.3.2 Allyl Phosphonates -- 10.2.3.3 Allylic Alcohol Derivatives -- 10.2.3.4 Miscellaneous -- 10.3 Appending a Side Chain -- 10.3.1 With No Functional Group -- 10.3.1.1 A Simple Case -- 10.3.1.2 The Specific Case of Isopropylidene -- 10.3.1.3 Removing Part of a Side Chain -- 10.3.2 With Functional Groups -- 10.4 Couplings -- 10.5 Cascade Processes Involving CM -- 10.5.1 ROM/CM -- 10.5.2 ROM/CM/RCM -- 10.5.3 ROM/RCM/CM -- 10.5.4 CM/RCM -- 10.5.5 RCEYM/CM -- 10.6 Ene-yne CM -- 10.7 Alkyne CM -- 10.8 Conclusion and Perspectives -- Acknowledgments -- References -- 11 Cascade Metathesis in Natural Product Synthesis -- 11.1 Introduction -- 11.2 RCM-CM Sequences -- 11.2.1 Ene-ene RCM-CM -- 11.2.1.1 Synthesis of (3R,9R,10R)-Panaxytriol -- 11.2.2 Ene-yne-ene RCM-CM -- 11.2.2.1 Synthesis of (+)-8-epi-Xanthatin -- 11.3 Ene-yne-ene RCM-RCM -- 11.3.1 Synthesis of Bicyclic Structures -- 11.3.1.1 Synthesis of (-)-Securinine and (+)-Viroallosecurinine -- 11.3.1.2 Total Synthesis of ent-Lepadin F and G -- 11.3.2 Synthesis of Tricyclic Compounds. , 11.3.2.1 Synthesis of (±)-Guanacastepene A -- 11.3.2.2 Approach to Taxane Analogs -- 11.3.3 Synthesis of Natural Products Containing Tetracycles -- 11.3.3.1 Synthesis of Erythrina Alkaloids -- 11.4 ROM-CM Sequences -- 11.4.1 Synthesis of Bistramide A -- 11.5 RCM-ROM Sequences - Ring-rearrangement Metathesis (RRM) -- 11.5.1 RRM of Monocyclic Substrates -- 11.5.1.1 Synthesis of Tetraponerines -- 11.5.1.2 Synthesis of (-)-Swainsonine and (+)-Castanospermine -- 11.5.1.3 Synthesis of (+)-trans-195A -- 11.5.1.4 Synthesis of (-)-Centrolobine - Diastereoselective RRM (d-RRM) -- 11.5.2 RRM of Bicyclic Substrates -- 11.5.2.1 Synthesis of Indolizidine 251F, (±)-trans-Lumausyne and Aburatubolactam A -- 11.5.2.2 Synthesis of (+)-ent-Lepadin B -- 11.6 RCM-ROM Sequences Combined with Other Metathesis Reactions -- 11.6.1 RCM-ROM-RCM -- 11.6.1.1 RCM-ROM-RCM Cascades of Monocyclic Structures -- 11.6.1.2 RCM-ROM-RCM Cascades of Bicyclic Structures -- 11.6.2 RCM-ROM-CM -- 11.6.2.1 Synthesis of (-)-Lasubine II -- 11.6.2.2 Synthesis of (+)-Cylindramide A and Bicyclic Core of Geodin A -- 11.6.2.3 Total Synthesis of (+)-Mycoepoxydiene -- 11.7 Conclusions and Outlook -- References -- 12 Catalytic Enantioselective Olefin Metathesis and Natural Product Synthesis -- 12.1 Introduction -- 12.2 Total Synthesis of Natural Products with Enantiomerically Pure Chiral Olefin Metathesis Catalysts Bearing a C2-symmetric Diolate Ligand -- 12.2.1 Total Synthesis of Coniine through Enantioselective RCM with Substrates Bearing a Tertiary Amine -- 12.2.2 Enantioselective Synthesis of Africanol by a Ring-opening/Ring-closing Metathesis Reaction -- 12.2.3 Enantioselective Synthesis of the Lactone Fragment of Anti-HIV Agent Tipranivir -- 12.3 Enantioselective Synthesis of Quebrachamine through an Exceptionally Challenging RCM Reaction. , 12.4 Synthesis of Baconipyrone C by Ru-catalyzed Enantioselective ROCM.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Newark :John Wiley & Sons, Incorporated,
    Keywords: Organometallic chemistry. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (338 pages)
    Edition: 1st ed.
    ISBN: 9783527819195
    DDC: 547.05
    Language: English
    Note: Cover -- Title Page -- Copyright -- Contents -- Foreword -- Preface -- Chapter 1 Industrial Milestones in Organometallic Chemistry -- 1.1 Definition of Organometallic and Metal-Organic Compounds -- 1.1.1 Applications and Key Reactivity -- 1.1.1.1 Electronic Applications -- 1.1.1.2 Polymers -- 1.1.1.3 Organic Synthesis -- 1.2 Industrial Process Considerations -- 1.3 Brief Notes on the Historical Development of Organometallic Chemistry for Organic Synthesis Applications Pertaining to the Contents of this Book -- 1.3.1 Synthesis of Stoichiometric Organometallic Reagents -- 1.3.1.1 Conventional Batch Synthesis -- 1.3.1.2 Organometallics in Flow -- 1.3.2 Cross‐coupling Reactions -- 1.3.2.1 C-HBond Activation -- 1.3.2.2 Carbonylation -- 1.3.2.3 Catalysis in Water - Micellar Catalysis -- 1.3.3 Hydrogenation Reactions -- 1.3.4 Olefin Formation Reactions -- 1.3.4.1 Wittig Reaction -- 1.3.4.2 Metathesis Reactions -- 1.3.4.3 Dehydrative Decarbonylation -- 1.3.4.4 Olefins as Starting Materials -- 1.3.5 Poly‐ or Oligomerization Processes -- 1.3.6 Photoredox Catalysis for Organic Synthesis -- 1.4 Conclusion and Outlook -- Biography -- References -- Chapter 2 Design, Development, and Execution of a Continuous‐flow‐Enabled API Manufacturing Route -- 2.1 Continuous‐flow‐Enabled Synthetic Strategy -- 2.2 Design and Scale‐up of Chan-Lam Coupling -- 2.2.1 Development of Homogeneous Conditions -- 2.2.2 Application of a Platform Technology to Aerobic Oxidation -- 2.2.3 Optimization of Reaction and Workup Parameters -- 2.2.4 Safety Considerations for Aerobic Oxidation on Scale -- 2.2.5 Continuous Scale‐up and Manufacturing -- 2.3 Design and Scale‐up of a Buchwald-Hartwig Cross‐coupling -- 2.3.1 Initial Screening -- 2.3.2 Synthesis and Isolation of Pd(dba)DPEPhos Precatalyst -- 2.3.3 Workup Procedure, Metal Removal, and Crystallization. , 2.3.4 Scale‐up and Manufacturing -- 2.4 Impurity Control -- 2.4.1 Solubility and Impurity Spiking Studies -- 2.5 Conclusions -- Biography -- References -- Chapter 3 Continuous Manufacturing as an Enabling Technology for Low‐Temperature Organometallic Chemistry -- 3.1 Introduction -- 3.2 Organo‐Li and Mg Processes in Flow Mode -- 3.2.1 Technological Advantages of Flow Technology Compared to Traditional Batch Operation -- 3.2.2 Temperature Profile of Continuous Flow Reactions -- 3.2.3 Flash Chemistry: Functional Group Tolerance -- 3.2.4 Flash Chemistry: Selectivity -- 3.2.5 Flash Chemistry: Stoichiometry and Chemoselectivity -- 3.3 Continuous Flow Technology -- 3.3.1 Clogging as a Major Hurdle in Flow Chemistry -- 3.3.2 Start‐up and Shutdown Operation -- 3.3.3 Material of Construction -- 3.3.4 Safety Concept and Emergency Strategies -- 3.4 Development of a Flow Process -- 3.4.1 Screening Phase: Feasibility Study -- 3.4.2 Process Development Phase: Extended Evaluations Including Technical Feasibility -- 3.5 Literature Examples: Flow Processes on Multi 100 g Scale -- 3.5.1 Manufacture of Verubecestat (MK‐8931) -- 3.5.2 Manufacture of Edivoxetine -- 3.5.3 Scale‐up of Highly Reactive Aryl Lithium Chemistry -- 3.5.4 Synthesis of Bromomethyltrifluoroborates in Continuous Flow Mode -- 3.5.5 Two‐Step Synthesis Toward Boronic Acids -- 3.5.6 Reaction Sequence Toward a Highly Substituted Benzoxazole Building Block -- 3.6 Conclusion and Future Prospects -- Biography -- References -- Chapter 4 Development of a Nickel‐Catalyzed Enantioselective Mizoroki-Heck Coupling -- 4.1 Introduction -- 4.1.1 Nonprecious Metal Catalysis Advantages for Industry -- 4.1.2 Mizoroki-Heck Couplings in Industry with Palladium -- 4.1.3 Emergence of Nickel‐Catalyzed Mizoroki-Heck Couplings -- 4.1.4 Enantioselective Nickel‐Catalyzed Couplings. , 4.1.5 Synthesis of Oxindoles via Mizoroki-Heck Cyclizations -- 4.2 Development of a Nickel‐Catalyzed Heck Cyclization to Generate Oxindoles with Quaternary Stereogenic Centers -- 4.2.1 Precedents and Challenges -- 4.2.2 Optimization of Reducing Agent and Base -- 4.2.3 Ligand Screening -- 4.2.4 Impact of Aryl Electrophile and of Stereochemistry of Alkene Moiety -- 4.2.5 Exploration of the Substrate Scope -- 4.2.6 Limitations of the Methodology -- 4.2.7 Mechanistic Considerations -- 4.3 Development of First Enantioselective Nickel‐Catalyzed Heck Coupling -- 4.3.1 Ligand Screening -- 4.3.2 Impact of Alkene Stereochemistry -- 4.3.3 Neutral vs Cationic Pathways -- 4.3.4 Nickel Precatalyst Complex Synthesis -- 4.3.5 Exploration of the Substrate Scope -- 4.3.6 Mechanistic Studies -- 4.4 Conclusions -- Biography -- References -- Chapter 5 Development of Iron‐Catalyzed Kumada Cross‐coupling for the Large‐Scale Production of Aliskiren Intermediate -- 5.1 Introduction -- 5.2 Optimization of Grade and Equivalents of Mg Metal -- 5.3 Optimization of Equivalents of 1,2‐Dibromoethane -- 5.4 Effect of Solvent Concentration on Preparation of Grignard Reagent and Kumada-Corriu Coupling -- 5.5 Effect of Alkyl Chloride 3 Addition Time on the Grignard Reagent Preparation -- 5.6 Stability of Grignard Reagent at 0-5 °C -- 5.7 Iron‐Catalyzed Cross‐coupling Reaction -- 5.8 Optimization of Equivalents of NMP and Fe(acac)3 -- 5.9 Optimization of Equivalents of Substrate 4 and Its Rate of Addition -- 5.10 Execution at Pilot Scale and Scale‐up Issues -- 5.11 Agitated Thin Film Evaporator (ATFE) for Purification of 2 -- 5.12 Conclusion -- Acknowledgments -- Biography -- References -- Chapter 6 Development and Scale‐Up of a Palladium‐Catalyzed Intramolecular Direct Arylation in the Commercial Synthesis of Beclabuvir -- 6.1 Introduction -- 6.2 KOAc/DMAc Process. , 6.3 TMAOAc/DMF Process -- 6.4 TMAOAc/DMAc Process -- 6.4.1 Cyclization Reaction -- 6.4.2 Mechanistic Understanding of the Cyclization Reaction and Impurity Formation -- 6.4.3 Hydrolysis and Workup -- 6.4.4 Crystallization and Drying -- 6.5 Conclusion -- Biography -- References -- Chapter 7 Ruthenium‐Catalyzed C-H Activated C-C/N/O Bond Formation Reactions for the Practical Synthesis of Heterocycles and Pharmaceutical Agents -- 7.1 Introduction -- 7.2 C-H Activation Followed by C C Bond Formation -- 7.2.1 C-H Activation Followed by C C Bond Formation: Biaryl/Heterobiaryl Synthesis in Organic Solvents -- 7.2.2 C-H Activation Followed by C C Bond Formation: Biaryl/Heterobiaryl Synthesis in Green Solvents -- 7.3 Alkyl/Acyl/Alkenyl Substitution on Heterocycles -- 7.4 C-H Activation Followed by C O/N Bond Formation: Heterocycle Synthesis -- 7.4.1 C-H Activation Followed by C O/N Bond Formation: Heterocycle Synthesis in Organic Solvents -- 7.4.2 C-H Activation Followed by C O and C N Bond Formation: Heterocycle Synthesis in Green Solvents -- 7.5 Conclusion -- Biography -- References -- Chapter 8 Cross‐couplings in Water - A Better Way to Assemble New Bonds -- 8.1 Introduction -- 8.2 Transition Metal Catalysis in Organic Solvents vs Micellar Catalysis -- 8.2.1 Micellization -- 8.2.2 Surfactant Solution - A Highly Organized Reaction Medium to Enhance Reaction Rate -- 8.2.3 Reaction Temperature -- 8.2.4 Size of Micelles -- 8.2.5 Nature of Catalyst -- 8.2.6 Increasing the Efficiency in Micellar Catalysis -- 8.2.7 Order of Addition -- 8.2.8 Product Precipitation or Extraction -- 8.2.9 Trace Metal in the Product -- 8.3 Highly Valuable Reactions in Water -- 8.3.1 Suzuki-Miyaura Couplings -- 8.3.2 Heck Couplings -- 8.3.3 Negishi Couplings -- 8.3.4 C-H Arylations -- 8.3.5 Aminations -- 8.3.6 Borylation -- 8.3.7 Arylation of Nitro Compounds. , 8.3.8 Adoption of Micellar Technology by Pharmaceutical Industry -- 8.4 Conclusions -- Biography -- References -- Chapter 9 Aspects of Homogeneous Hydrogenation from Industrial Research -- 9.1 Homogeneous Hydrogenation: A Brief Introduction -- 9.2 Catalyst Selection by Effective Screening Approaches -- 9.3 Considerations for Reaction Scale‐up -- 9.4 Notes on Additive Effects -- 9.5 A Novel Approach to Aliskiren Using Asymmetric Hydrogenation as a Key Step -- 9.6 Efficient Chemoselective Aldehyde Hydrogenation -- 9.7 Closing Remarks/Summary -- Biography -- References -- Chapter 10 Latest Industrial Uses of Olefin Metathesis -- 10.1 Introduction -- 10.2 General Information -- 10.2.1 Non‐ruthenium Catalysts -- 10.2.2 Ruthenium Catalysts -- 10.3 Industrial Uses -- 10.3.1 Ring‐closing Metathesis (RCM) -- 10.3.2 Cross‐metathesis (CM) -- 10.3.3 Ring‐Opening Metathesis Polymerization (ROMP) -- 10.4 Reaction Considerations -- 10.4.1 Catalyst Choice -- 10.4.2 Catalyst Loading -- 10.4.3 Solvent -- 10.4.4 Reaction Concentration -- 10.4.5 Overall Handling -- 10.4.6 Application Guide and Availability -- 10.5 Troubleshooting -- 10.5.1 Catalyst Removal -- 10.5.2 Functional Group Tolerance -- 10.5.3 Substrate Purity -- 10.5.4 Catalyst Decomposition - Isomerization -- 10.6 Conclusion -- Biography -- References -- Chapter 11 Dehydrative Decarbonylation -- 11.1 Introduction -- 11.2 Use of Sacrificial Anhydride and Catalytic Mechanism -- 11.3 Rh‐, Pd‐, and Ir‐Catalysis -- 11.3.1 Early Studies -- 11.3.2 Recent Studies -- 11.4 Milder Temperatures -- 11.4.1 PdCl2/XantPhos/(tBu)4biphenol System -- 11.4.2 Well‐Defined Pd‐bis(phosphine) Precatalysts -- 11.5 Nickel and Iron Catalysis -- 11.6 Ester Decarbonylation -- 11.7 Synthetic Utility: -Vinyl Carbonyl Compounds -- 11.8 Conclusions and Future Prospects -- Biography -- References -- Index -- EULA.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Newark :John Wiley & Sons, Incorporated,
    Keywords: Metathesis (Chemistry) -- Handbooks, manuals, etc. ; Metal catalysts -- Industrial applications. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (444 pages)
    Edition: 2nd ed.
    ISBN: 9783527694006
    Language: English
    Note: Cover -- Contents -- Preface -- List of Contributors -- Chapter 1 High-Oxidation State Molybdenum and Tungsten Complexes Relevant to Olefin Metathesis -- 1.1 Introduction -- 1.2 New Imido Ligands and Synthetic Approaches -- 1.3 Bispyrrolide and Related Complexes -- 1.4 Monoalkoxide Pyrrolide (MAP) Complexes -- 1.5 Reactions of Alkylidenes with Olefins -- 1.6 Olefin and Metallacyclopentane Complexes -- 1.7 Tungsten Oxo Complexes -- 1.8 Bisaryloxides -- 1.9 Other Constructs -- 1.10 Conclusions -- Acknowledgments -- References -- Chapter 2 Alkane Metathesis -- 2.1 Introduction -- 2.2 Alkane Metathesis by Single-Catalyst Systems -- 2.2.1 Supported Metal Hydrides -- 2.2.1.1 Supported Zr-Polyhydrides -- 2.2.1.2 Supported Ta-Polyhydrides -- 2.2.1.3 Supported W-Polyhydrides -- 2.2.2 Metal Alkylidene/Alkylidyne on Surface Oxide -- 2.2.2.1 Structure-Activity Relationship of Alkylidene Complexes -- 2.2.2.2 Stoichiometric Activity of Well-Defined, Metal Alkylidenes with Alkanes -- 2.2.2.3 Synthesis of Supported WMe6 on Silica -- 2.3 Alkane Metathesis by Tandem, Dual-Catalytic Systems -- 2.3.1 Introduction -- 2.3.2 The Chevron Process Using WO3/SiO2 and Pt-Li/Al2O3 -- 2.3.3 Tandem, Dual Catalytic System Using Ir-Pincer Ligands and Mo-Alkylidene Complexes -- 2.3.3.1 The Development of Robust, Iridium-Based Alkane Dehydrogenation Catalysts -- 2.3.3.2 Cyclic and Cross-Alkane Metathesis -- 2.4 Conclusion -- References -- Chapter 3 Diastereocontrol in Olefin Metathesis: the Development of Z-Selective Ruthenium Catalysts -- 3.1 Introduction -- 3.2 The Challenge of Z-Selective Olefin Metathesis -- 3.3 Previous Strategies -- 3.4 A Serendipitous Discovery -- 3.5 Catalyst Studies -- 3.5.1 Summary of Substituent Effects -- 3.5.1.1 Investigating the X-type Ligand -- 3.5.1.2 Effect of the NHC -- 3.5.2 Decomposition of Z-Selective Ru Metathesis Catalysts. , 3.6 Applications of Z-Selective Ru Metathesis Catalysts -- 3.6.1 Cross Metathesis -- 3.6.1.1 Homodimerization or Homocoupling -- 3.6.1.2 Other Cross-Metathesis Reactions -- 3.6.2 Ring-Closing Metathesis (RCM) -- 3.6.3 Ring-Opening Metathesis Polymerization (ROMP) -- 3.7 Conclusion -- References -- Chapter 4 Ruthenium Olefin Metathesis Catalysts Supported by Cyclic Alkyl Aminocarbenes (CAACs) -- 4.1 Introduction -- 4.2 Properties and Preparation of CAAC Ligands -- 4.3 CAAC-Supported, Ruthenium Olefin Metathesis Catalysts -- 4.3.1 CAAC Catalyst Development and Their Application to Ring-Closing Metathesis -- 4.3.2 Application to Cross Metathesis, Ethenolysis, and Degenerate Metathesis -- 4.4 Summary -- References -- Chapter 5 Supported Catalysts and Nontraditional Reaction Media -- 5.1 Introduction -- 5.2 Supported Catalyst Systems -- 5.2.1 Supported Catalysts via Covalent Interactions -- 5.2.1.1 Grubbs-Type, Ru-Based Systems -- 5.2.1.2 Schrock-Type, Mo- or W-Based Systems -- 5.2.2 Supported Catalysts via Non-covalent Interactions -- 5.2.2.1 Grubbs-Type, Ru-Based Systems -- 5.2.2.2 Early Transition-Metal Systems -- 5.3 Olefin Metathesis in Nontraditional Media -- 5.3.1 Olefin Metathesis in Water -- 5.3.1.1 Modified Catalyst Architectures -- 5.3.1.2 Commercially Available Catalysts -- 5.3.2 Olefin Metathesis in Ionic Liquids -- 5.3.2.1 Neutral Catalyst Systems -- 5.3.2.2 Ionic Modification to the Catalyst System -- 5.3.3 Olefin Metathesis in Fluorous Media -- 5.4 Conclusions -- References -- Chapter 6 Insights from Computational Studies on d0 Metal-Catalyzed Alkene and Alkyne Metathesis and Related Reactions -- 6.1 Introduction -- 6.2 Alkene Metathesis -- 6.2.1 Well-Defined Systems -- 6.2.1.1 Electronic Structure of M(ER1)(=CHR2)(X)(Y) Molecular Catalysts -- 6.2.1.2 Electronic Structure of Silica-Supported (≡SiO)M(ER1)(=CHtBu)(X) Catalysts. , 6.2.1.3 Electronic Structure of Metallacyclobutane Intermediates for the Molecular Catalysts -- 6.2.1.4 Alkene Metathesis Pathway for Well-Defined Catalysts -- 6.2.1.5 Deactivation and By-Product Formation Pathways for M(ER1)(=CHR2)(X)(Y) Catalysts -- 6.2.2 Classical, Heterogeneous Catalysts -- 6.2.2.1 MoO3 on Alumina -- 6.2.2.2 MoO3 on Silica -- 6.2.2.3 MoO3 on Zeolites -- 6.2.2.4 Re2O7 on Alumina and Silica: Alumina and Related Alumina-Supported CH3ReO3 Systems -- 6.3 Alkyne Metathesis -- 6.3.1 Group 6 M(***CR)(X)(Y)2 Alkylidyne Complexes in Alkyne Metathesis -- 6.3.2 Nitrile-Alkyne Cross Metathesis by the Reaction of W(N)X3 with 2-Butyne -- 6.4 Alkane Metathesis -- 6.4.1 Reactivity of Tantalum Hydrides -- 6.4.2 Reactivity of the Alumina-Supported, Bisalkyl Alkylidyne Tungsten Catalysts -- 6.5 Outlook -- References -- Chapter 7 Computational Studies of Ruthenium-Catalyzed Olefin Metathesis -- 7.1 Introduction -- 7.2 Computational Investigations of Non-Chelated Ruthenium Catalysts -- 7.2.1 Reaction Mechanisms -- 7.2.1.1 General Mechanism -- 7.2.1.2 Associative and Dissociative Mechanisms for Initiation -- 7.2.1.3 Initiation of Catalysts with Hemilabile Ligands -- 7.2.1.4 Bottom-Bound and Side-Bound Olefin Complexes -- 7.2.1.5 Structure of the Metallacyclobutane -- 7.2.2 Effects of Spectator Ligands -- 7.2.2.1 Stability of the Metallacyclobutane -- 7.2.2.2 Binding of Phosphine and Olefin Ligands -- 7.2.2.3 Rotameric Effects on the Alkylidene -- 7.2.2.4 Effect of Anionic Ligands -- 7.2.2.5 Summary of Ligand Effects -- 7.2.3 E/Z Selectivity -- 7.2.4 Reactivities of Substituted Olefins -- 7.2.5 Computations on Different Types of Olefin Metathesis Reactions -- 7.2.5.1 Ring-Opening Metathesis Polymerization -- 7.2.5.2 Ring-Closing Metathesis -- 7.2.5.3 Enyne Metathesis -- 7.2.6 Decomposition of Ruthenium Olefin Metathesis Catalysts. , 7.2.7 Alkene Isomerization -- 7.3 Computational Investigations of Chelated, Z-Selective Ruthenium Catalysts -- 7.3.1 Mechanism and Origins of Z Selectivity -- 7.3.2 Decomposition Pathways of the Chelated Ruthenium Catalysts -- 7.4 Accuracy of the Computational Methods -- References -- Chapter 8 Intermediates in Olefin Metathesis -- 8.1 Introduction -- 8.2 Metathesis-Active, Early-Metal Metallacycles -- 8.3 Intermediates in Ruthenium-Catalyzed Olefin Metathesis -- 8.3.1 Ruthenacyclobutane Intermediates Derived from Phosphonium Alkylidene Complexes -- 8.3.2 Ruthenacyclobutane Intermediates Derived from Bispyridyl Complexes -- 8.3.3 Ruthenium Alkylidene/Olefin Intermediates -- 8.4 Future Directions -- References -- Chapter 9 Factors Affecting Initiation Rates -- 9.1 Introduction -- 9.1.1 Discussion of General Terms -- 9.1.2 Experimental Measurement of Initiation Rates -- 9.2 Grubbs Second-Generation Catalyst -- 9.2.1 Phosphine Dissociation Related to Initiation and Metathesis Efficiency -- 9.2.2 Halide Substitution -- 9.2.3 Solvent Effects -- 9.2.4 Effect of Alkene Structure -- 9.3 Grubbs-Hoveyda-Type Precatalysts -- 9.4 Pyridine Solvates -- 9.5 Piers Catalysts -- 9.6 Indenylidene Carbene Precatalysts -- 9.7 Z-Selective Catalysts -- 9.8 Herrmann-Type, BisNHCs -- 9.9 Conclusions -- Acknowledgments -- References -- Chapter 10 Degenerate Metathesis -- 10.1 Introduction -- 10.2 Degenerate Metathesis Mechanisms -- 10.2.1 Potential Impact on Catalyst Efficiencies -- 10.3 Degenerate Metathesis with Early Transition-Metal Catalysts -- 10.3.1 Homogeneous, Early Transition-Metal Catalysts -- 10.3.2 Heterogeneous, Early Transition-Metal Catalysts -- 10.3.3 Conclusions on Degenerate Metathesis with Early Transition-Metal Catalysts -- 10.4 Degenerate Metathesis with Ruthenium Catalysts -- 10.5 Beneficial Effects of Degenerate Metathesis -- 10.6 Conclusions. , References -- Chapter 11 Mechanisms of Olefin Metathesis Catalyst Decomposition and Methods of Catalyst Reactivation -- 11.1 Introduction -- 11.2 Decomposition of Mo and W Imido Alkylidene Catalysts and Related Complexes -- 11.2.1 Mechanisms of Decomposition of Mo and W Systems -- 11.2.2 Strategies to Extend the Lifetime of Mo and W Catalysts -- 11.3 Decomposition of Ru Alkylidene Catalysts and Related Complexes -- 11.3.1 Thermal Decomposition of First-Generation Systems -- 11.3.2 Thermal Decomposition of Second-Generation Systems -- 11.3.3 Decomposition in the Presence of Small Molecules and Functional Groups -- 11.3.4 Strategies to Prevent the Decomposition of Ru Catalysts -- 11.3.5 Reactivation of Ruthenium Catalysts -- 11.4 Conclusions -- References -- Chapter 12 Solvent and Additive Effects on Olefin Metathesis -- 12.1 General Introduction -- 12.2 Solvent Effects on Olefin Metathesis -- 12.3 Additive Effects in Olefin Metathesis -- 12.4 Summary -- References -- Chapter 13 Metathesis Product Purification -- 13.1 Introduction -- 13.2 Chromatographic and Chemical Removal of Ruthenium -- 13.3 Removal by Complexation -- 13.4 Conclusion -- References -- Chapter 14 Ruthenium Indenylidene Catalysts for Alkene Metathesis -- 14.1 Introduction -- 14.2 The Initial Development of Indenylidene Metal Complexes for Alkene Metathesis -- 14.2.1 The Ruthenium Allenylidene Precursors -- 14.2.2 From Allenylidene to Indenylidene Ruthenium Complexes and Catalysts -- 14.2.3 Intramolecular Allenylidene-into-Indenylidene Rearrangements -- 14.3 Binuclear Indenylidene Ruthenium Catalysts Arising from Ruthenium(arene) Complexes -- 14.4 Preparation of Ruthenium Indenylidene Catalysts from RuCl2(PPh3)3 -- 14.4.1 First-Generation Ruthenium Indenylidene Catalysts Bearing Two Phosphine Ligands -- 14.4.2 First-Generation Ruthenium Indenylidene Catalysts Bearing a Chelating Ligand. , 14.4.2.1 First-Generation Ruthenium Indenylidene Catalysts Bearing a Bidentate Schiff Base Ligand.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Newark :John Wiley & Sons, Incorporated,
    Keywords: Polymerization -- Handbooks, manuals, etc. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (772 pages)
    Edition: 2nd ed.
    ISBN: 9783527694020
    DDC: 660.299
    Language: English
    Note: Cover -- Contents -- Preface -- List of Contributors -- List of Abbreviations -- Chapter 1 General Ring-Closing Metathesis -- 1.1 Introduction -- 1.2 Carbocycles (Introduction) -- 1.2.1 Small-Sized Carbocycles -- 1.2.2 Medium-Sized Carbocycles -- 1.2.3 Spiro Carbocycles -- 1.3 Synthesis of Bridged Bicycloalkenes -- 1.4 Synthesis of Heterocycles Containing Si, P, S, or B -- 1.4.1 Si-Heterocycles -- 1.4.2 P-Heterocycles -- 1.4.3 S-Heterocycles -- 1.4.4 B-Heterocycles -- 1.5 Synthesis of O-Heterocycles -- 1.5.1 Small and Medium-Size Cyclic Ethers -- 1.5.2 Polycyclic Ethers -- 1.6 Synthesis of N-Heterocycles -- 1.6.1 N-Heterocycles -- 1.6.2 Small and Medium-Sized Lactams -- 1.7 Synthesis of Cyclic Conjugated Dienes -- 1.8 Alkyne Metathesis -- 1.9 Enyne Metathesis -- 1.9.1 General Enyne Metathesis -- 1.9.2 Dienyne Metathesis -- 1.10 Tandem Processes -- 1.10.1 Tandem ROM/RCM -- 1.10.2 Other Tandem RCMs -- 1.11 Synthesis of Macrocycles -- 1.11.1 Macrocycles -- 1.11.2 Macrolactones -- 1.11.3 Macrolactams -- 1.12 RCM and Isomerization via Ru-H -- 1.13 Relay RCM (RRCM) -- 1.14 Z-Selective RCM -- 1.14.1 Substrate-Controlled Z-Selective RCM -- 1.14.2 Catalyst-Controlled Z-Selective RCM -- 1.15 Enantioselective RCM -- 1.16 Conclusion -- Acknowledgments -- References -- Chapter 2 Cross-Metathesis -- 2.1 Early Examples Using Well-Defined Molybdenum and Ruthenium Catalysts -- 2.2 The General Model for Selectivity in CM Reactions -- 2.3 Definition of Cross-Metathesis Reaction Categories and Chapter Organization -- 2.4 Hydrocarbons -- 2.4.1 Alkane Extensions -- 2.4.2 Unsaturated Hydrocarbons, Including Styrene -- 2.4.3 Ethylene Cross-Metathesis -- 2.5 Boron -- 2.6 Nitrogen -- 2.6.1 Amines -- 2.6.2 Amines as CM Partners in Heterocycle Syntheses -- 2.6.3 Acrylonitrile and Other Nitrile-Based CM Applications -- 2.6.4 Other Nitrogenous Substrates -- 2.7 Oxygen. , 2.7.1 Primary Allylic Alcohols and Derivatives -- 2.7.2 Secondary Allylic Alcohols and Derivatives -- 2.7.3 Tertiary Allylic Alcohols and Derivatives -- 2.7.4 Homoallylic Alcohols and Derivatives -- 2.7.5 Vinyl Ethers -- 2.7.6 Acrolein, Crotonaldehyde, and Methacrolein -- 2.7.7 Methyl Vinyl Ketone and Related Systems -- 2.7.8 Acrylic Acid -- 2.7.9 Acrylic Acid Derivatives, Including Esters, Thioesters, and Amides -- 2.8 Halides -- 2.9 Phosphorus -- 2.10 Sulfur -- 2.11 Fragment Coupling Reactions -- 2.11.1 Acetogenins -- 2.11.2 Cross-Metathesis Selectivity -- 2.11.3 Tuning Metathesis Selectivity -- 2.11.4 CM as an Alternative Coupling Strategy -- 2.11.5 CM-Based Analog Synthesis -- 2.11.6 Polyene Metathesis -- 2.11.7 Cross-Metathesis Reaction Optimization: Pinnaic Acid -- 2.12 Conclusions -- References -- Chapter 3 Vignette: Extending the Application of Metathesis in Chemical Biology - The Development of Site-Selective Peptide and Protein Modifications -- 3.1 Introduction -- 3.2 Cross-Metathesis Methodology Studies in Aqueous Media -- 3.2.1 Allyl Sulfides are Reactive Substrates in Olefin Metathesis -- 3.2.2 Sulfur-Relayed Cross-Metathesis -- 3.2.3 Application of Aqueous Metathesis of Allyl Sulfides in Synthesis -- 3.2.4 Cross-Metathesis of Se-Allyl Selenocysteine -- 3.3 Strategies for Allyl Chalogenide Incorporation into Proteins -- 3.3.1 Conjugate Addition to Dehydroalanine -- 3.3.2 Allyl Selenenylsulfide Rearrangement -- 3.3.3 S-Allyl Cysteine as a Methionine Surrogate -- 3.3.4 Other Genetic Incorporation Strategies -- 3.4 Olefin Metathesis on Proteins -- 3.4.1 Magnesium(II) is an Essential Additive in Olefin Metathesis on Proteins -- 3.4.2 Further Investigation of Allyl Ethers and Allyl Sulfides in RCM of Proteins and Peptides -- 3.4.3 Expanding the Scope of Cross-Metathesis on Proteins -- 3.5 Outlook -- References. , Chapter 4 Ruthenium-Catalyzed Tandem Metathesis/Non-Metathesis Processes -- 4.1 Introduction -- 4.2 Metathesis/Isomerization -- 4.2.1 RCM/Isomerization -- 4.2.2 Isomerization/RCM -- 4.2.3 CM/Isomerization -- 4.2.4 Enyne Metathesis/Isomerization -- 4.2.5 Isomerization/Enyne Metathesis -- 4.3 Metathesis/Hydrogenation -- 4.3.1 RCM/Hydrogenation -- 4.3.2 CM/Hydrogenation -- 4.4 Metathesis/Oxidation -- 4.4.1 RCM/Oxidative Aromatization -- 4.4.2 RCM/Allylic Oxidation -- 4.4.3 Metathesis/Hydroxylation -- 4.5 Metathesis/Cyclization -- 4.5.1 CM/aza-Michael Reaction -- 4.5.2 CM/oxa-Michael Reaction -- 4.5.3 CM/Conjugate Addition -- 4.5.4 CM/Conjugate Addition/Cyclization -- 4.5.5 RCM/Isomerization/Cyclization -- 4.6 Metathesis/Atom-Transfer Radical Addition -- 4.6.1 RCM/Kharasch Addition -- 4.6.2 CM/Kharasch Addition -- 4.6.3 Enyne Metathesis/Kharasch Addition -- 4.7 Metathesis/Rearrangement -- 4.7.1 Claisen Rearrangement/RCM -- 4.8 Metathesis/Cyclopropanation -- 4.8.1 Cyclopropanation/RCM -- 4.8.2 Enyne Metathesis/Cyclopropanation -- 4.8.3 CM/Cyclopropanation -- 4.8.4 RCM/Isomerization/Cyclopropanation -- 4.9 Metathesis/Miscellaneous -- 4.9.1 CM/Wittig Olefination -- 4.9.2 CM/Cycloaddition (Hetero-Pauson-Khand Reaction) -- 4.9.3 Enyne Metathesis/Hydrovinylation -- 4.9.4 Allylic Carboxylation/RCM -- 4.10 Conclusions -- References -- Chapter 5 Enyne Metathesis -- 5.1 Introduction -- 5.2 Enyne Metathesis -- 5.2.1 Brief Historical Background (1985-2002) -- 5.2.2 Mechanistic Studies and Selectivity Issues -- 5.2.2.1 Dichotomy of Mechanism - "Ene-First" or "Yne-First -- 5.2.2.2 Regioselectivity in Enyne Ring-Closing Metathesis -- 5.2.2.3 Regio and Stereoselectivity in Enyne Cross Metathesis -- 5.2.3 Enyne Metathesis and Metallotropic [1, 3] Shift (M& -- M) -- 5.2.4 Other Metal-Catalyzed Enyne Metatheses (Skeletal Reorganizations) -- 5.2.4.1 Introduction. , 5.2.4.2 Formation of Type-I exo Products -- 5.2.4.3 Formation of Type-II exo Products -- 5.2.4.4 Formation of endo Products -- 5.2.4.5 Miscellaneous -- 5.3 Strategic Application of Enyne Metathesis in Organic Synthesis -- 5.3.1 Enyne Metathesis -- 5.3.1.1 Enyne RCM in Synthesis of Carbocycles and Heterocycles -- 5.3.1.2 Enyne CM -- 5.3.1.3 Enyne Metathesis in Natural Products Synthesis -- 5.3.2 Tandem Enyne Metathesis -- 5.3.2.1 Dienyne Metathesis -- 5.3.2.2 Enyne RCM-CM Sequence -- 5.3.2.3 Enyne Ring-Rearrangement Metathesis (RRM) -- 5.3.2.4 Multiple Enyne Metathesis -- 5.3.2.5 Enyne CM-RCM Sequence -- 5.3.3 Tandem Enyne Metathesis-Diels-Alder Reaction Sequences -- 5.3.3.1 Enyne Metathesis-Intermolecular Diels-Alder Reaction -- 5.3.3.2 Enyne Metathesis-Intramolecular Diels-Alder Reaction -- 5.3.4 Other Tandem Enyne Metathesis Sequences -- 5.4 Perspective -- References -- Chapter 6 Alkyne Metathesis -- 6.1 Introduction -- 6.2 Background Information -- 6.3 Molybdenum Alkylidyne Catalysts with Silanolate Ligands -- 6.3.1 General -- 6.3.2 Representative Procedure: Ring-Closing Alkyne Metathesis with the Aid of a Bench-Stable Molybdenum Alkylidyne Adduct -- 6.3.3 Molybdenum Nitrides as Precatalysts -- 6.3.4 Structural and Mechanistic Aspects -- 6.4 Other Catalytically Active Molybdenum Alkylidyne Complexes -- 6.5 Novel Tungsten Alkylidyne Catalysts -- 6.6 Basic Types of Applications -- 6.6.1 Alkyne Self-Metathesis and Cyclo-Oligomerization Reactions -- 6.6.2 Oligomerization and Polymerization Reactions -- 6.6.3 Alkyne Cross Metathesis -- 6.6.4 Ring-Closing Alkyne Metathesis -- 6.6.5 Metathesis of Terminal Alkynes -- 6.7 Selected Applications -- 6.7.1 Organometallic Substrates -- 6.7.2 Olfactory Macrocycles -- 6.7.3 Cruentaren A -- 6.7.4 Haliclonacyclamine C -- 6.7.5 Nakadomarin A -- 6.7.6 Prostaglandins and Oxylipins -- 6.7.7 Neurymenolide A. , 6.7.8 Tulearin C -- 6.7.9 Stereoselective Syntheses of 1,3-Dienes by RCAM/Semireduction: Total Syntheses of Latrunculin, Lactimidomycin, and Leiodermatolide -- 6.7.10 Amphidinolide V -- 6.7.11 Citreofuran -- 6.7.12 Polycavernoside A -- 6.7.13 Amphidinolide F -- 6.7.14 Spirastrellolide F -- 6.8 Conclusions -- References -- Chapter 7 Catalyst-Controlled Stereoselective Olefin Metathesis -- 7.1 Introduction -- 7.2 Enantioselective Ring-Opening/Cross-Metathesis (EROCM) -- 7.2.1 Reactions with Chiral Ru Carbenes -- 7.2.2 Reactions with Chiral Mo-Based Biphenolates -- 7.2.3 Reactions of Azabicycles: Ru- versus Mo-Based Catalysts -- 7.2.4 Application to Enantioselective Synthesis of a Natural Product -- 7.3 Enantioselective Ring-Opening/Ring-Closing Metathesis (ERORCM) -- 7.4 Enantioselective Ring-Closing Metathesis (ERCM) -- 7.4.1 Reactions with Chiral Ru-Based Complexes -- 7.4.2 ERCM Reactions with Chiral Mo-Based Diolates -- 7.4.2.1 Synthesis of N-Heterocycles -- 7.4.2.2 Synthesis of Cyclic Alkenyl Ethers -- 7.4.2.3 Synthesis of Cyclic Alkenes with a P-Stereogenic Center -- 7.4.2.4 Control of Planar Stereogenicity -- 7.4.3 Reactions with Monopyrrolide-Aryloxide (MAP) Stereogenic-at-Mo Complexes -- 7.4.3.1 Catalyst Design, ERCM Reactions, and Application to Total Synthesis of Quebrachamine -- 7.4.3.2 Enantioselective Enyne RCM -- 7.5 Z-Selective Olefin Metathesis Reactions with Mo- and W-Based Complexes -- 7.5.1 Reactions with Chiral Mo-Based Diolates: Net Enantio- and Z-Selective Cross-Metathesis (CM) -- 7.5.2 Reactions with Mo- and W-Based Monopyrrolide Aryloxide (MAP) Complexes -- 7.5.2.1 Catalytic Enantio- and Z-Selective Ring-Opening/Cross-Metathesis (ROCM) -- 7.5.2.2 Catalytic Z-Selective Homo-Coupling -- 7.5.2.3 Catalytic Z-Selective Cross-Metathesis (CM) -- 7.5.2.4 Pure E-Alkenes by Catalytic Z-Selective Ethenolysis. , 7.5.2.5 Catalytic Z-Selective Macrocyclic Ring-Closing Metathesis (RCM).
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Newark :John Wiley & Sons, Incorporated,
    Keywords: Metathesis (Chemistry). ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (424 pages)
    Edition: 2nd ed.
    ISBN: 9783527694075
    Language: English
    Note: Cover -- Contents -- Preface -- List of Contributors -- Chapter 1 Synthesis of Homopolymers and Copolymers -- 1.1 Introduction -- 1.2 Initiators -- 1.3 Monomers -- 1.4 Synthesis of Polymers with Complex Architectures -- 1.5 Stereochemistry and Sequence Control in ROMP -- 1.6 Conclusion -- References -- Chapter 2 ROMP in Dispersed Media -- 2.1 Introduction -- 2.2 Emulsion ROMP -- 2.2.1 Mini-emulsion ROMP -- 2.2.2 Micro-emulsion ROMP -- 2.2.3 Micellar ROMP -- 2.2.4 ROMP in Nonaqueous Emulsions -- 2.3 Dispersion ROMP -- 2.3.1 Biomedical Applications of PNBE-PEO Core-Shell Nanoparticles -- 2.4 Suspension ROMP -- 2.5 Formation of Nanoparticles -- 2.5.1 Photoactive ROMP Assemblies -- 2.5.2 Miscellaneous -- 2.6 Conclusion -- References -- Chapter 3 Telechelic Polymers -- 3.1 Introduction -- 3.2 Mono-telechelic Polymers -- 3.2.1 Reaction with Substituted Vinyl Ethers -- 3.2.2 Vinyl Lactone Quenching -- 3.2.3 Terminal Cross Metathesis -- 3.2.3.1 Using Symmetrical Olefins -- 3.2.3.2 Using Asymmetrical Olefins -- 3.2.4 Reaction with Oxygen -- 3.2.5 Sacrificial Diblock Copolymer Synthesis -- 3.2.6 Catalyst Prefunctionalization -- 3.2.6.1 Functional Catalysts from Precursor Complexes -- 3.2.6.2 Functional Catalysts via Cross Metathesis -- 3.2.7 Aldehyde Quenching -- 3.3 Homo-telechelic Polymers -- 3.3.1 Degradation of Unsaturated Polymers and ADMET Polymerization -- 3.3.2 ROMP/Chain Transfer -- 3.3.3 Sacrificial Multiblock Copolymers -- 3.4 Hetero-telechelic Polymers -- 3.4.1 Prefunctionalization with Functional Alkylidene Initiators -- 3.4.2 Prefunctionalization with Sacrificial Synthesis -- 3.5 Conclusions and Outlook -- Acknowledgments -- References -- Chapter 4 Supramolecular Polymers -- 4.1 Introduction -- 4.2 Main-Chain Supramolecular Polymers -- 4.2.1 Macromonomers -- 4.2.2 ABC Triblock Copolymers. , 4.3 Side-Chain-Functionalized Supramolecular Polymers -- 4.3.1 Hydrogen-Bonding Recognition Motifs -- 4.3.2 Metal Coordination-Based Recognition Motifs -- 4.3.3 Mixed Orthogonal Recognition Motifs -- 4.4 Supramolecular Architectures by Design -- 4.5 Conclusion -- References -- Chapter 5 Synthesis of Materials with Nanostructured Periodicity -- 5.1 Introduction -- 5.2 Sequential ROMP -- 5.3 Inorganic Composite Materials -- 5.4 ABA Triblock Copolymers -- 5.5 Nanostructures with Domain Sizes Exceeding 100 nm -- 5.6 Conclusions -- References -- Chapter 6 Synthesis of Nanoparticles -- 6.1 Introduction -- 6.2 Formation of Nanoparticles -- 6.3 Synthesis via Grafting-through Approach -- 6.4 Synthesis via Grafting-to Approach -- 6.4.1 Grafting-to Polymer Backbones via an Activated Ester -- 6.4.2 Grafting-to Polymer Backbones via Copper-Catalyzed Click Reaction -- 6.5 Synthesis via Grafting-from Approach -- 6.6 Summary -- References -- Chapter 7 Synthesis of Biodegradable Copolymers -- 7.1 Introduction -- 7.2 Polyester-Functionalized Polymers -- 7.3 Peptide-Functionalized Polymers -- 7.4 Carbohydrate-Functionalized Polymers -- 7.5 Antimicrobial Polymers -- 7.6 Polymeric Betaines -- 7.7 ROMP Polymers as Drug Carriers -- 7.8 ROMP Polymers for Tissue Scaffolds -- 7.9 Conclusion -- References -- Chapter 8 Biologically Active Polymers -- 8.1 Introduction -- 8.2 Benefits of ROMP for Bioactive Polymer Synthesis -- 8.3 Biologically Active Polymeric Displays -- 8.3.1 Catalyst Design -- 8.3.2 Monomer Design for Bioactive Polymers -- 8.3.3 Troubleshooting in Polymerization of Bioactive Monomers -- 8.3.4 Routes to Functionalized Polymers -- 8.4 Exploiting the Bulk Properties of Polymers -- 8.4.1 Hydrogels -- 8.4.2 Coatings -- 8.4.2.1 Nonfouling Surfaces -- 8.4.2.2 Antimicrobial Peptides -- 8.4.2.3 Integrin-Binding Materials for Cell Adhesion and Spreading. , 8.4.2.4 Biolubricants -- 8.4.3 Drug Delivery -- 8.4.3.1 Self-Assembled Polymer Nanoparticles -- 8.4.3.2 Bottlebrush ROMP Polymers -- 8.4.4 Analytical Tools for Biodetection -- 8.4.4.1 On-Chip Assays -- 8.4.4.2 Imaging Agents -- 8.5 Probes of Biological Processes -- 8.5.1 Inhibitors -- 8.5.1.1 The Selectins and the Inflammatory Response -- 8.5.1.2 Integrins and Cellular Adhesion -- 8.5.1.3 GAG Surrogates -- 8.5.2 Effectors -- 8.5.2.1 Chemotaxis -- 8.5.2.2 Multivalent Antigens in B-Cell Signaling -- 8.5.3 Cell Penetration Polymers -- 8.5.3.1 Translocation Domains and Polyplexes -- 8.5.3.2 Targeted Delivery: B Cell Internalization -- 8.5.4 Assembling Multiprotein Complexes -- 8.5.4.1 Regulation of Immune Responses -- 8.6 Outlook -- References -- Chapter 9 Combination of Olefin Metathesis Polymerization with Click Chemistry -- 9.1 Introduction -- 9.2 Attaching Functional Groups for Click Reaction -- 9.2.1 Alkyne(s) -- 9.2.2 Azide(s) -- 9.2.3 Thiol(s) -- 9.2.4 Acrylate(s)/Maleimide(s) -- 9.2.5 Anthracene(s) -- 9.2.6 Click Reaction before ROMP -- 9.3 Copper-Catalyzed Azide/Alkyne Click Reaction -- 9.3.1 Polymers with Hydrogen-Bonding Motifs -- 9.3.2 Biomedical Applications -- 9.3.3 Complex Polymeric Architectures via Azide/Alkyne Click Chemistry -- 9.3.4 Grafting-from and Catalyst Design -- 9.4 Diels-Alder Click Reaction -- 9.5 Thiol-Ene Reaction -- 9.6 Thiol-Michael Addition -- 9.7 Meldrum's Acid-Containing Polymers as Precursor for Ketene Coupling -- 9.8 Nitrile Oxide Cycloaddition -- Acknowledgment -- References -- Chapter 10 Self-Healing Polymers -- 10.1 Introduction -- 10.2 Monomer Storage -- 10.2.1 Encapsulation -- 10.2.2 Monomer-Filled Discreet and Connected Channels -- 10.3 Catalyst Stability and Protection -- 10.4 Catalyst and Monomer Choice -- 10.4.1 Pre-macroscopic Gelation: Monomer Delivery and Catalyst Dissolution. , 10.4.2 Pre-vitrification: Catalyst Diffusion and Polymerization -- 10.4.3 Post-vitrification: Healed Polymer -- 10.5 Intrinsic Self-Healing Polymers -- 10.5.1 Mechanochemical Activation of Alkylidene Ruthenium Complexes -- 10.5.2 Dynamic Cross-Metathesis in Unsaturated Polymers -- 10.6 Conclusions -- References -- Chapter 11 Functional Supports and Materials -- 11.1 Introduction -- 11.2 Preparation of Functional Supports -- 11.2.1 Precipitation Polymerization Methods -- 11.2.2 Grafting Techniques -- 11.2.3 Coating Techniques -- 11.2.4 Nanoparticle Loading -- 11.3 Functional Monolithic Supports -- 11.3.1 Concepts -- 11.3.2 Synthesis of Monolithic Supports -- 11.3.3 Functionalization, Metal Removal, and Metal Content -- 11.3.4 Applications -- 11.3.4.1 Catalysis -- 11.3.4.2 Separation Science -- 11.3.4.3 Tissue Engineering -- 11.4 Twenty-First Century Functional Supports -- 11.5 Summary and Outlook -- Acknowledgment -- References -- Chapter 12 Latent Ruthenium Catalysts for Ring Opening Metathesis Polymerization (ROMP) -- 12.1 Introduction -- 12.2 Thermal Activation -- 12.2.1 Cis-Dianion Type Catalysts -- 12.2.2 Catalysts Bearing Electron-Rich Carbene Ligands -- 12.2.3 Catalysts Bearing Chelating Ligands -- 12.3 Light-Induced Activation -- 12.4 Chemical Activation -- 12.5 Mechanical Activation -- 12.6 Conclusions -- References -- Chapter 13 ADMET Polymerization -- 13.1 Introduction -- 13.2 ADMET: The Metathesis Polycondensation Reaction -- 13.2.1 Implications of Step Growth -- 13.2.2 Cyclization versus Polymerization -- 13.2.3 Interchange Reactions -- 13.2.4 Monomer Purity -- 13.2.5 Catalyst Considerations -- 13.2.5.1 Isomerization -- 13.2.5.2 Catalyst Activity and Functional Group Tolerance -- 13.2.6 Solvent -- 13.2.7 Hydrogenation -- 13.3 ADMET of Nonconjugated Hydrocarbon Dienes -- 13.3.1 Terminal Dienes -- 13.3.2 Branched Terminal Dienes. , 13.3.3 1,1-Disubstitued Olefins -- 13.3.4 1,2-Disubstituted Olefins -- 13.3.5 Trisubstituted Olefins -- 13.4 ADMET Copolymerization -- 13.5 ADMET of Functionalized Dienes -- 13.5.1 Ethers, Acetals, and Alcohols -- 13.5.2 Amines -- 13.5.3 Thioethers -- 13.5.4 Carbonyl Compounds -- 13.5.5 Negative Neighboring Group Effect -- 13.5.6 Halides -- 13.5.7 Carboxylic and Phosphonic Acids -- 13.5.8 Silicon Compounds -- 13.5.9 Ionomers -- 13.5.10 Organometallic Compounds -- 13.6 Functional Materials -- 13.6.1 Biological Applications -- 13.6.2 Electroactive Polymers -- 13.6.3 Liquid-Crystalline Polymers -- 13.7 Modeling Polyethylene -- 13.7.1 Modeling Branching in Polyethylene -- 13.7.2 Modeling Copolymers of Ethylene and Vinyl Monomers -- 13.8 Conjugated Polymers -- 13.8.1 Polyacetylenes -- 13.8.2 Poly(phenylene vinylene)s -- 13.8.3 Poly(thienylene vinylene) -- 13.8.4 Other Conjugated Polymers -- 13.9 Solid-State Polymerization -- 13.10 ADMET Depolymerization -- 13.11 Telechelic Oligomers -- 13.12 Complex Polymer Architectures -- 13.12.1 Hyperbranced Polymers -- 13.12.2 Mechanically Interlocked Polymers -- 13.13 Biorenewable Polymers -- 13.14 Conclusions and Outlook -- References -- Chapter 14 Biorenewable Polymers -- 14.1 Introduction -- 14.2 ADMET -- 14.2.1 Plant Oils -- 14.2.2 Postmodification -- 14.2.3 Acyclic Triene Metathesis (ATMET) -- 14.2.4 Specialized Polymers -- 14.2.4.1 Polymers for Isomerization Studies -- 14.2.4.2 Phosphorus-Containing Polymers -- 14.2.4.3 Nylon -- 14.3 ROMP -- 14.3.1 Castor Oil -- 14.3.2 Dilulin -- 14.3.3 Norbornyl-Modified Fatty Acids -- 14.3.4 Terpenes -- 14.4 Conclusion -- References -- Chapter 15 Polymerization of Substituted Acetylenes -- 15.1 Introduction -- 15.2 Polymerization Reactions -- 15.3 Catalysts -- 15.4 Recent Catalysts for Living Polymerization -- 15.4.1 Metal Halide-Based Catalysts. , 15.4.2 Single-Component Catalysts.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Inorganic chemistry 12 (1973), S. 2166-2170 
    ISSN: 1520-510X
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1520-5002
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of the American Chemical Society 103 (1981), S. 5922-5923 
    ISSN: 1520-5126
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of the American Chemical Society 104 (1982), S. 2942-2944 
    ISSN: 1520-5126
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of the American Chemical Society 104 (1982), S. 5499-5500 
    ISSN: 1520-5126
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...