GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Journals
  • Articles  (112)
  • Wiley  (50)
  • Elsevier  (48)
  • PERGAMON-ELSEVIER SCIENCE LTD  (14)
Document type
Keywords
  • 11
    Publication Date: 2023-09-22
    Description: There is still considerable debate about which mechanisms drive the relationship between biodiversity and ecosystem function (BEF). Although most scientists agree on the existence of two underlying mechanisms, complementarity and selection, experimental studies keep producing contrasting results on the relative contributions of the two effects. We present a spatially explicit resource competition model and investigate how the strength of these effects is influenced by trait and environmental variability, resource distribution, and species pool size. Our results demonstrate that the increase of biomass production with increasing species numbers depends on the concurrence of environmental and trait variability: BEF relationships are stronger if functionally different species coexist in a landscape with heterogeneous resource supply. These large biodiversity effects arise from complementarity effects, whereas selection effects are maximized when broad trait ranges coincide with narrow ranges of resource supply ratios. Our results will therefore help to resolve the debate on complementarity and selection mechanisms.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2024-05-03
    Description: The Wadden Sea is a transition area between land, rivers, and the North Sea. It is of great ecological importance for a wide range of fish species that use it in the course of their life cycle for various purposes. It is a highly dynamic environment and is subject to strong seasonal patterns and annual variations in abiotic conditions. The Sylt-Rømø Bight (SRB) is a semi-enclosed tidal basin in the northern Wadden Sea between the islands of Sylt (Germany) and Rømø (Denmark). Monthly monitoring data of juvenile fish taken in the SRB from 2007 to 2019 were analyzed to determine the changes in species composition in comparison to previous monitoring programs (1989–1995). The long-term trends, common patterns, and potential effects of environmental parameters (sea surface temperature (SST), salinity, chlorophyll a, and the North Atlantic Oscillation (NAO) winter indices) were determined. In total, 55 species were recorded and only 22 of these together accounted for more than 95% of the total abundance for the entire monitoring. Results showed a changed species composition as we did not find two boreal, one Lusitanian, and one circum-temperate species recorded in the previous programs. Instead, one boreal, six Lusitanian, and one Atlantic species were observed for the first time. The fish community was dominated by high seasonal fluctuations of abundance with either dome-shaped, increasing, or decreasing trends. Dynamic Factor Analysis (DFA) partitioned the fish community into three seasonal assemblages based on SST preferences. Redundancy Analysis (RDA) revealed that environmental parameters explained 29 % of the variations in the fish community. These variances were partly a result of the spring immigration of Lusitanian species and the emigration of boreal species and vice versa in autumn. The absence of four previously reported species and the addition of eight new species support the hypothesis that warm-adapted species are increasing in the Wadden Sea. The inclusion of these seasonal variations into conservation and management practices is critical to the sustainable management of marine and coastal ecosystems covering spawning, nursery, and feeding grounds.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2023-09-27
    Description: Field studies are essential to reliably quantify ecological responses to global change because they are exposed to realistic climate manipulations. Yet such studies are limited in replicates, resulting in less power and, therefore, potentially unreliable effect estimates. Furthermore, while manipulative field experiments are assumed to be more powerful than non-manipulative observations, it has rarely been scrutinized using extensive data. Here, using 3847 field experiments that were designed to estimate the effect of environmental stressors on ecosystems, we systematically quantified their statistical power and magnitude (Type M) and sign (Type S) errors. Our investigations focused upon the reliability of field experiments to assess the effect of stressors on both ecosystem's response magnitude and variability. When controlling for publication bias, single experiments were underpowered to detect response magnitude (median power: 18%–38% depending on effect sizes). Single experiments also had much lower power to detect response variability (6%–12% depending on effect sizes) than response magnitude. Such underpowered studies could exaggerate estimates of response magnitude by 2–3 times (Type M errors) and variability by 4–10 times. Type S errors were comparatively rare. These observations indicate that low power, coupled with publication bias, inflates the estimates of anthropogenic impacts. Importantly, we found that meta-analyses largely mitigated the issues of low power and exaggerated effect size estimates. Rather surprisingly, manipulative experiments and non-manipulative observations had very similar results in terms of their power, Type M and S errors. Therefore, the previous assumption about the superiority of manipulative experiments in terms of power is overstated. These results call for highly powered field studies to reliably inform theory building and policymaking, via more collaboration and team science, and large-scale ecosystem facilities. Future studies also require transparent reporting and open science practices to approach reproducible and reliable empirical work and evidence synthesis.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2014-12-10
    Description: Here we present a new, pan-Atlantic compilation and analysis of data on Calanus finmarchicus abundance, demography, dormancy, egg production and mortality in relation to basin-scale patterns of temperature, phytoplankton biomass, circulation and other environmental characteristics in the context of understanding factors determining the distribution and abundance of C. finmarchicus across its North Atlantic habitat. A number of themes emerge: (1) the south-to-north transport of plankton in the northeast Atlantic contrasts with north-to-south transport in the western North Atlantic, which has implications for understanding population responses of C. finmarchicus to climate forcing, (2) recruitment to the youngest copepodite stages occurs during or just after the phytoplankton bloom in the east whereas it occurs after the bloom at many western sites, with up to 3.5 months difference in recruitment timing, (3) the deep basin and gyre of the southern Norwegian Sea is the centre of production and overwintering of C. finmarchicus, upon which the surrounding waters depend, whereas, in the Labrador/Irminger Seas production mainly occurs along the margins, such that the deep basins serve as collection areas and refugia for the overwintering populations, rather than as centres of production, (4) the western North Atlantic marginal seas have an important role in sustaining high C. finmarchicus abundance on the nearby coastal shelves, (5) differences in mean temperature and chlorophyll concentration between the western and eastern North Atlantic are reflected in regional differences in female body size and egg production, (6) regional differences in functional responses of egg production rate may reflect genetic differences between western and eastern populations, (7) dormancy duration is generally shorter in the deep waters adjacent to the lower latitude western North Atlantic shelves than in the east, (8) there are differences in stage-specific daily mortality rates between eastern and western shelves and basins, but the survival trajectories for cohort development from CI to CV are similar, and (9) early life stage survival is much lower in regions where C. finmarchicus is found with its congeners, C. glacialis and/or C. hyperboreus. This compilation and analysis provides new knowledge for evaluation and parameterisation of population models of C. finmarchicus and their responses to climate change in the North Atlantic. The strengths and weaknesses of modeling approaches, including a statistical approach based on ecological niche theory and a dynamical approach based on knowledge of spatial population dynamics and life history, are discussed, as well as needs for further research.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2023-09-27
    Description: 〈jats:p〉Anthropogenic climate change is altering global biogeographical patterns. However, it remains difficult to quantify how bioregions are changing because pre‐industrial records of species distributions are rare. Marine microfossils, such as planktonic foraminifera, are preserved in seafloor sediments and allow the quantification of bioregions in the past. Using a recently compiled data set of pre‐industrial species composition of planktonic foraminifera in 3802 worldwide seafloor sediments, we employed multivariate and statistical model‐based approaches to study spatial turnover in order to 1) quantify planktonic foraminifera bioregions and 2) understand the environmental drivers of species turnover. Four latitudinally banded bioregions emerge from the global assemblage data. The polar and temperate bioregions are bi‐hemispheric, supporting the idea that planktonic foraminifera species are not limited by dispersal. The equatorial bioregion shows complex longitudinal patterns and overlaps in sea surface temperature (SST) range with the tropical bioregion. Compositional‐turnover models (Bayesian bootstrap generalised dissimilarity models) identify SST as the strongest driver of species turnover. The turnover rate is constant across most of the SST gradient, showing no SST threshold values with rapid shifts in species composition, but decelerates above 25°C, suggesting SST is less predictive of species composition in warmer waters. Other environmental predictors affect species turnover non‐linearly, and their importance differs across regions. In the Pacific ocean, net primary productivity below 500 mgC m〈jats:sup〉−2〈/jats:sup〉 day〈jats:sup〉−1〈/jats:sup〉 drives fast compositional change. Water depth values below 3000 m (which affect calcareous microfossil preservation) increasingly drive changes in species composition among death assemblages in the Pacific and Indian oceans. Together, our results suggest that the dynamics of planktonic foraminifera bioregions are expected to be highly responsive to climate change; however, at lower latitudes, environmental drivers other than SST may affect these dynamics.〈/jats:p〉
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2023-08-08
    Description: Aim: The distribution of mesoplankton communities has been poorly studied at global scale, especially from in situ instruments. This study aims to (1) describe the global distribution of mesoplankton communities in relation to their environment and (2) as-sess the ability of various environmental- based ocean regionalizations to explain the distribution of these communities. Location: Global ocean, 0–500 m depth. Time Period: 2008–2019. Major Taxa Studied: Twenty-eight groups of large mesoplanktonic and macroplank-tonic organisms, covering Metazoa, Rhizaria and Cyanobacteria. Methods: From a global data set of 2500 vertical profiles making use of the Underwater Vision Profiler 5 (UVP5), an in situ imaging instrument, we studied the global distribu-tion of large (〉600 μm) mesoplanktonic organisms. Among the 6.8 million imaged ob-jects, 330,000 were large zooplanktonic organisms and phytoplankton colonies, the rest consisting of marine snow particles. Multivariate ordination (PCA) and clustering were used to describe patterns in community composition, while comparison with existing regionalizations was performed with regression methods (RDA). Results: Within the observed size range, epipelagic plankton communities were Trichodesmium- enriched in the intertropical Atlantic, Copepoda- enriched at high latitudes and in upwelling areas, and Rhizaria-enriched in oligotrophic areas. In the mesopelagic layer, Copepoda-enriched communities were also found at high lati-tudes and in the Atlantic Ocean, while Rhizaria-enriched communities prevailed in the Peruvian upwelling system and a few mixed communities were found elsewhere. The comparison between the distribution of these communities and a set of existing regionalizations of the ocean suggested that the structure of plankton communities described above is mostly driven by basin- level environmental conditions. Main Conclusions: In both layers, three types of plankton communities emerged and seemed to be mostly driven by regional environmental conditions. This work sheds light on the role not only of metazoans, but also of unexpected large protists and cy-anobacteria in structuring large mesoplankton communities.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    Elsevier
    In:  EPIC3Automatica, Elsevier, 144, pp. 110487-110487, ISSN: 0005-1098
    Publication Date: 2023-10-23
    Description: The presence of tipping points in ecological systems implies abrupt changes in the dynamics of the ecosystem. In these piecewise-smooth dynamical systems sliding dynamics, i.e., dynamics on the switching boundary, have been reported for population models. However, the question whether or not, and if so under which conditions, sliding dynamics may occur in an optimally controlled system have not yet been studied. We explore this issue in a simple harvesting model with two regimes, and find that optimal sliding may occur if regular steady states do not exist. Hence, sliding dynamics may be part of an optimal policy.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2017-04-04
    Description: Society’s needs for a network of in situ ocean observing systems cross many areas of earth and marine science. Here we review the science themes that benefit from data supplied from ocean observatories. Understanding from existing studies is fragmented to the extent that it lacks the coherent long-term monitoring needed to address questions at the scales essential to understand climate change and improve geo-hazard early warning. Data sets from the deep sea are particularly rare with long-term data available from only a few locations worldwide. These science areas have impacts on societal health and well-being and our awareness of ocean function in a shifting climate. Substantial efforts are underway to realise a network of open-ocean observatories around European Seas that will operate over multiple decades. Some systems are already collecting high-resolution data from surface, water column, seafloor, and sub-seafloor sensors linked to shore by satellite or cable connection in real or near-real time, along with samples and other data collected in a delayed mode. We expect that such observatories will contribute to answering major ocean science questions including: How can monitoring of factors such as seismic activity, pore fluid chemistry and pressure, and gas hydrate stability improve seismic, slope failure, and tsunami warning? What aspects of physical oceanography, biogeochemical cycling, and ecosystems will be most sensitive to climatic and anthropogenic change? What are natural versus anthropogenic changes? Most fundamentally, how are marine processes that occur at differing scales related? The development of ocean observatories provides a substantial opportunity for ocean science to evolve in Europe. Here we also describe some basic attributes of network design. Observatory networks provide the means to coordinate and integrate the collection of standardised data capable of bridging measurement scales across a dispersed area in European Seas adding needed certainty to estimates of future oceanic conditions. Observatory data can be analysed along with other data such as those from satellites, drifting floats, autonomous underwater vehicles, model analysis, and the known distribution and abundances of marine fauna in order to address some of the questions posed above. Standardised methods for information management are also becoming established to ensure better accessibility and traceability of these data sets and ultimately to increase their use for societal benefit. The connection of ocean observatory effort into larger frameworks including the Global Earth Observation System of Systems (GEOSS) and the Global Monitoring of Environment and Security (GMES) is integral to its success. It is in a greater integrated framework that the full potential of the component systems will be realised.
    Description: Published
    Description: 1-33
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: reserved
    Keywords: Seafloor and water columnobservatories ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate ; 01. Atmosphere::01.01. Atmosphere::01.01.04. Processes and Dynamics ; 01. Atmosphere::01.01. Atmosphere::01.01.08. Instruments and techniques ; 03. Hydrosphere::03.01. General::03.01.03. Global climate models ; 03. Hydrosphere::03.01. General::03.01.07. Physical and biogeochemical interactions ; 03. Hydrosphere::03.01. General::03.01.08. Instruments and techniques ; 03. Hydrosphere::03.03. Physical::03.03.01. Air/water/earth interactions ; 03. Hydrosphere::03.03. Physical::03.03.02. General circulation ; 03. Hydrosphere::03.03. Physical::03.03.03. Interannual-to-decadal ocean variability ; 03. Hydrosphere::03.03. Physical::03.03.05. Instruments and techniques ; 03. Hydrosphere::03.04. Chemical and biological::03.04.01. Biogeochemical cycles ; 03. Hydrosphere::03.04. Chemical and biological::03.04.02. Carbon cycling ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.04. Ecosystems ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 03. Hydrosphere::03.04. Chemical and biological::03.04.08. Instruments and techniques ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.04. Geology::04.04.04. Marine geology ; 04. Solid Earth::04.04. Geology::04.04.11. Instruments and techniques ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.05. Geomagnetism::04.05.05. Main geomagnetic field ; 04. Solid Earth::04.05. Geomagnetism::04.05.08. Instruments and techniques ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.03. Heat generation and transport ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanism ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 05. General::05.01. Computational geophysics::05.01.01. Data processing ; 05. General::05.02. Data dissemination::05.02.99. General or miscellaneous ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 05. General::05.02. Data dissemination::05.02.02. Seismological data ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions ; 05. General::05.02. Data dissemination::05.02.04. Hydrogeological data ; 05. General::05.08. Risk::05.08.01. Environmental risk ; 05. General::05.08. Risk::05.08.02. Hydrogeological risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2023-10-12
    Description: Due to the strong interconnectedness between the ocean and our societies worldwide, improved ocean governance is essential for sustainable development in the context of the UN Ocean Decade. However, a multitude of different perspectives—ecological, societal, political, economic—and relations between these have to be understood and taken into consideration to foster transformative pathways towards marine sustainability. A core challenge that we are facing is that the ‘right’ response to complex societal issues cannot be known beforehand as abilities to predict complex systems are limited. Consequently, societal transformation is necessarily a journey towards the unknown and therefore requires experimental approaches that must enable the involvement of everyone with stakes in the future of our marine environment and its resources. A promising transdisciplinary research method that fulfils both criteria—being participatory and experimental—are real-world laboratories. Here, we discuss how real-world labs can serve as an operational framework in the context of the Ocean Decade by facilitating and guiding successful knowledge exchange at the interface of science and society. The core element of real-world labs is transdisciplinary experimentation to jointly develop potential strategies leading to targeted real-world interventions, essential for achieving the proposed ‘Decade Outcomes’. The authors specifically illustrate how deploying the concept of real-world labs can be advantageous when having to deal with multiple, overlapping challenges in the context of ocean governance and the blue economy. Altogether, we offer a first major contribution to synthesizing knowledge on the potentials of marine real-world labs, considering how they act as a way of exploring options for sustainable ocean futures. Indeed, in the marine context, real-world labs are still under-explored but are a tangible way for addressing the societal challenges of working towards sustainability transformations over the coming UN Ocean Decade and beyond. Read the free Plain Language Summary for this article on the Journal blog.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    PERGAMON-ELSEVIER SCIENCE LTD
    In:  EPIC3Deep-Sea Research Part II-Topical Studies in Oceanography, PERGAMON-ELSEVIER SCIENCE LTD, online, pp. 1-14, ISSN: 0967-0645
    Publication Date: 2017-12-31
    Description: The snow crab Chionoecetes opilio and Arctic lyre crab Hyas coarctatus are prominent members of the Chukchi Sea epifaunal community. A better understanding of their life history will aid in determining their role in this ecosystem in light of the changing climate and resource development. In this study, the size frequency distribution, growth, and mortality of these two crab species was examined in 2009, 2010, 2012, and 2013 to determine temporal and spatial patterns within the eastern Chukchi Sea, and to identify potential environmental drivers of the observed patterns. Temporally, the mean size of both sexes of C. opilio and H. coarctatus decreased significantly from 2009 to 2013, with the number of rare maximum sized organisms decreasing significantly to near absence in the latter two study years. Spatially, the mean size of male and female crabs of both species showed a latitudinal trend, decreasing from south to north in the investigation area. Growth of both sexes of C. opilio and H. coarctatus was linear over the sampled size range, and mortality was highest in the latter two study years. Life history features of both species related to different environmental parameters in different years, ranging from temperature, the sediment carbon to nitrogen ratio of the organic content, and sediment grain size distribution. Likely explanations for the observed temporal and spatial variability are ontogenetic migrations of mature crabs to warmer areas possibly due to cooler water temperatures in the latter two study years, or interannual fluctuations, which have been reported for C. opilio populations in other areas where successful waves of recruitment were estimated to occur in eight year intervals. Further research is suggested to determine if the spatial and temporal patterns found in this study are part of the natural variability in this system or if they are an indication of long-term trends.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...