GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (10)
  • ddc:600  (8)
  • ddc:300  (2)
  • 05.08. Risk
  • 550 - Earth sciences
  • phylogeny
  • Stockholm : European Council for an Energy Efficient Economy  (4)
  • Berlin : Agora Energiewende  (3)
  • Abingdon : Routledge  (2)
  • Amman : Friedrich-Ebert-Stiftung  (1)
  • 1
    Publication Date: 2022-02-18
    Description: This paper analyses and compares industry sector transformation strategies as envisioned in recent German, European and global deep decarbonisation scenarios. The first part of the paper identifies and categorises ten key strategies for deep emission reductions in the industry sector. These ten key strategies are energy efficiency, direct electrification, use of climateneutral hydrogen and/or synthetic fuels, use of biomass, use of CCS, use of CCU, increases in material efficiency, circular economy, material substitution and end-use demand reductions. The second part of the paper presents a meta-analysis of selected scenarios, focusing on the question of which scenario relies to what extent on the respective mitigation strategies. The key findings of the meta-analysis are discussed, with an emphasis on identifying those strategies that are commonly pursued in all or the vast majority of the scenarios and those strategies that are only pursued in a limited number of the scenarios. Possible reasons for differences in the choice of strategies are investigated. The paper concludes by deriving key insights from the analysis, including identifying the main uncertainties that are still apparent with regard to the future steps necessary to achieve deep emission reductions in the industry sector and how future research can address these uncertainties.
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-05-18
    Description: The earth's capacity to absorb greenhouse gases is ultimately a critical limiting factor in the handling of metals. The fact that the demand for metals far exceeds their secondary production is extremely problematic at this point. Nevertheless, metals are crucial for climate protection and energy system transformation. Examples are the rare earth metal neodymium used in high-performance permanent magnets in wind turbines, the alkali metal lithium as the most important component in batteries, or the metal tellurium used in thin-film solar cells to generate solar power. It is therefore essential to promote the aspects of resource efficiency and to strengthen the critical role of metals in national and European policy programs. Next to a global solution, a European solo effort with predominantly market-based instruments and the effects of committed behaviour by civil society in the European Union (EU), show that the EU can make a considerable contribution to sustainable development on its own. Thus, a comprehensive approach is needed for sustainable metal management in the sense of a circular economy on the European level fostering sustainable production and consumption pathways. But, this need and the special role of metals are not seen in the current debate about resources in society and politics. Due to the fact that in public perception, metallic raw materials are often discussed as less urgent than energy or polymer raw materials, this article aims to highlight the critical role of metals. Further, the objective of this contribution is to show which prerequisites exist for the development and establishment of a holistic metal management and where political strategies have to start. Challenges needed to be overcome to achieve such a holistic metal strategy and management are highlighted. In particular, the role of the metal industry, circular product design and labelling and corresponding indicator systems is examined. In addition, the special role of digitalisation is being worked out. Finally, conclusions are drawn and shown which aspects have to be considered for a holistic metal strategy and management.
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: bookpart , doc-type:bookPart
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-05-18
    Description: Sustainable consumption policies affect households differently, in particular when they are confronted with limitations on income, time or freedom of movement (e.g. driving to work). And although it is possible to assess either the average or individual material footprint (per capita or via surveys), we lack methods to describe different types of households, their lifestyles and footprints in a representative manner. We explore possibilities to do so in this article. Our interest lies in finding an applicable method that allows us to describe the footprint of households regarding their socio-demographic characteristics but also find the causes consumption behaviour. This type of monitoring would enable us to tailor policies for sustainable consumption that respect people's needs and restrictions.
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: bookpart , doc-type:bookPart
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-02-18
    Description: The basic materials industries are a cornerstone of Europe's economic prosperity, increasing gross value added and providing around 2 million high-quality jobs. But they are also a major source of greenhouse gas emissions. Despite efficiency improvements, emissions from these industries were mostly constant for several years prior to the Covid-19 crisis and today account for 20 per cent of the EU's total greenhouse gas emissions. A central question is therefore: How can the basic material industries in the EU become climate-neutral by 2050 while maintaining a strong position in a highly competitive global market? And how can these industries help the EU reach the higher 2030 climate target - a reduction of greenhouse gas emissions of at least 55 per cent relative to 1990 levels? In the EU policy debate on the European Green Deal, many suppose that the basic materials industries can do little to achieve deep cuts in emissions by 2030. Beyond improvements to the efficiency of existing technologies, they assume that no further innovations will be feasible within that period. This study takes a different view. It shows that a more ambitious approach involving the early implementation of key low-carbon technologies and a Clean Industry Package is not just possible, but in fact necessary to safeguard global competitiveness.
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: report , doc-type:report
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-01-18
    Description: A clear understanding of socio-technical interdependencies and a structured vision are prerequisites for fostering and steering a transition to a fully renewables-based energy system. To facilitate such understanding, a phase model for the renewable energy (RE) transition in the Middle East and North Africa (MENA) countries has been developed and applied to the country case of Jordan. It is designed to support the strategy development and to serve as a guide for decision-makers. The analysis shows that Jordan has taken essential steps towards a RE transition. According to the MENA energy transition phase model, Jordan can be classified as being in a transitional stage between the first phase, "Take-Off Renewables", and the second phase, "System Integration". However, fossil fuels continue to play a dominant role in the Jordanian energy sector, and the fluctuating world market prices for fossil fuels impact the economy. The expansion of domestically produced RE could significantly contribute to reducing Jordan's high imports of fossil fuels. This simultaneously increases energy security and reduces the trade deficit. To move towards a sustainable energy system, Jordan needs to embrace comprehensive flexibility measures. These include developing storage options, improving load management, upgrading the existing grid infrastructure, enhancing energy efficiency, exploring the electrification of end use sectors, and creating strong cooperation between stakeholders.
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: report , doc-type:report
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-02-18
    Description: The concept of sufficiency - reducing energy uses beyond technical efficiency - is far-reaching and requires a reflection on human needs, energy services, urban structures, social norms, and the role of policies to support the shift towards lower-energy societies. In recent years, a growing body of literature has been published on energy sufficiency in various disciplines. However, there has been limited exchanges and cooperation among researchers so far, hindering the visibility and impact of this research. This paper presents an assessment of where sufficiency research stands, especially in the perspective of policy-making. It is the first overview paper issued in the context of the newly-founded ENOUGH network - International network for sufficiency research & policy, established in 2017. In the first part, we provide a condensed literature review on energy sufficiency, based on dozens of recent references collected through the network. Through four main themes (the nature of sufficiency, the challenges of modelling it, the barriers to its diffusion, and the approaches to foster it), we summarise the key issues and approaches. We then present what the scholars themselves see as the priorities for future research, promising sufficiency policy options, and key barriers that research should help overcome. We collected their views through a questionnaire completed by more than 40 knowledgeable authors and experts from various disciplines. We finally build on the previous parts to draw some recommendations on how sufficiency research could increase its impact, notably in relation to policy-making.
    Keywords: ddc:300
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-02-18
    Description: Technological innovations in energy-intensive industries (EIIs) have traditionally emerged within the boundaries of a specific sector. Now that these industries are facing the challenges of deep decarbonisation and a significant reduction in greenhouse gas (GHG) emissions is expected to be achieved across sectors, cross-industry collaboration is becoming increasingly relevant for low-carbon innovation. Accessing knowledge and other resources from other industrial sectors as well as co-developing innovative concepts around industrial symbiosis can be mutually beneficial in the search for fossil-free feedstocks and emissions reductions. In order to harness the potential of this type of innovation, it is important to understand not only the technical innovations themselves, but in particular the non-technical influencing factors that can drive the successful implementation of cross-industry collaborative innovation projects. The scientific state of the art does not provide much insight into this particular area of research. Therefore, this paper builds on three separate strands of innovation theory (cross-industry innovation, low-carbon innovation and innovation in EIIs) and takes an explorative case-study approach to identify key influencing factors for cross-industry collaboration for low-carbon innovation in EIIs. For this purpose, a broad empirical database built within the European joint research project REINVENT is analysed. The results from this project provide deep insights into the dynamics of low-carbon innovation projects of selected EIIs. Furthermore, the paper draws on insights from the research project SCI4Climate.NRW. This project serves as the scientific competence centre for IN4Climate.NRW, a unique initiative formed by politicians, industry and science to promote, among other activities, cross-industry collaboration for the implementation of a climate-neutral industry in the German federal state of North Rhine-Westphalia (NRW). Based on the results of the case study analysis, five key influencing factors are identified that drive the implementation of cross-industry collaboration for low-carbon innovation in EIIs: Cross-industry innovation projects benefit from institutionalised cross-industry exchange and professional project management and coordination. Identifying opportunities for regional integration as well as the mitigation of financial risk can also foster collaboration. Lastly, clear political framework conditions across industrial sectors are a key driver.
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Stockholm : European Council for an Energy Efficient Economy
    Publication Date: 2022-08-23
    Description: The Fit for 55 package stipulates a fair, competitive and green transition by 2030 and beyond. As part of this, increasing attention is given to the decarbonisation of the building stock: only 1 % of buildings in Europe are retrofitted each year, a number which must double if the EU is to meet its 2050 targets. Significant energy efficiency investments are needed, whilst the planned expansion of the EU-ETS to the building sector in 2026 will likely pass the carbon cost onto the consumer. This will increase the cost burden placed on low-income households, exacerbating energy poverty, if these two strategies are not counterbalanced by adequate policies and support mechanisms. The European Private Rented Sector (PRS) is often side-lined by policymakers when implementing energy efficiency policies to tackle energy poverty. As many as 1 in 10 Europeans spend 40 % or more of their income on housing costs, with those in the PRS struggling with energy-related problems, such as poor energy efficiency and maintenance, to a much greater degree than the general population. Understanding these challenges and creating targeted policies is of critical scientific and policy importance. To date, a pan-European policy on how to address energy poverty and energy efficiency improvements in the PRS is lacking; current European Union instruments to address such issues (including the Fit for 55, and the Clean Energy Package that preceded it) lack a dedicated approach towards the complex structural issues embedded in the European PRS. What is more, there is a limited understanding of the character of energy poverty in such residential dwellings, as well as policies to address energy injustices. We therefore examine current and historical disparities in energy poverty between the EU's PRS tenants and the general population by analysing a variety of quantitative indicators which reflect different dimensions of energy poverty. We then take stock of the policy landscape, identifying energy efficiency policies tailored to alleviate energy poverty in the PRS and common challenges. We subsequently interrogate possible solutions, drawing on existing good practice policies. In so doing, we aim to reduce the sector's political invisibility by addressing the lack of disaggregated, targeted data and dismantling barriers that currently lead to the PRS being disproportionately affected by energy poverty.
    Keywords: ddc:300
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-04-25
    Description: Die Grundstoffindustrie ist ein wichtiger Pfeiler des Wohlstands in Deutschland, sie garantiert Wertschöpfung und sorgt für über 550.000 hochwertige Arbeitsplätze. Um diese für die deutsche Wirtschaft wichtigen Branchen zu erhalten, müssen jetzt die Schlüsseltechnologien für eine CO2-arme Grundstoffproduktion entwickelt und für den großtechnischen Einsatz skaliert werden. Die vorliegende Analyse ist als Ergänzung zu der Studie "Klimaneutrale Industrie: Schlüsseltechnologien und Politikoptionen für Stahl, Chemie und Zement" gedacht. Die 13 in der erwähnten Studie vorgestellten Schlüsseltechnologien werden hier für die technisch interessierten Leserinnen und Leser eingehender beschrieben und diskutiert. Diese Publikation dient als Aufschlag für eine Diskussion über Technologieoptionen und Strategien für eine klimaneutrale Industrie. Alle Daten und Annahmen in dieser Analyse wurden mit Unternehmen und Branchenverbänden intensiv besprochen. Die quantitativen Aussagen sind trotzdem als vorläufig zu betrachten, da sich viele Technologien noch in einer frühen Entwicklungsphase befinden und Abschätzungen über Kosten mit großen Unsicherheiten verbunden sind.
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: German
    Type: report , doc-type:report
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-04-25
    Description: Die Grundstoffindustrie ist ein Pfeiler des Wohlstands in Deutschland, sie garantiert Wertschöpfung und sorgt für über 550.000 hochwertige Arbeitsplätze. Im Ausland steht Made in Germany für höchste Qualität und Innovationsdynamik. Aber: Trotz Effizienz­steigerungen sind die Emissionen der Industrie in den letzten Jahren nicht gefallen und durch die nationalen und internationalen Klimaschutzziele steigt der Druck. Die zentrale Frage lautet daher: Wie kann die Grundstoffindustrie in Deutschland bis spätestens 2050 klimaneutral werden - und gleichzeitig ihre starke Stellung im internationalen Wettbewerbs­umfeld behalten? Agora Energiewende und das Wuppertal Institut haben im Rahmen dieses Projekts in zahlreichen Workshops mit Industrie, Verbänden, Gewerkschaften, Ministerien und der Zivilgesellschaft die Zukunft für eine klimaneutrale Industrie diskutiert und einen Lösungsraum aus technologischen Optionen und politischen Rahmenbedingungen skizziert. In den Workshops wurde deutlich: Die Industrie steht in den Startlöchern, die Herausforderung Klimaschutz offensiv anzugehen. Die fehlenden Rahmenbedingungen und der bisher unzureichende Gestaltungswille der Politik, innovative Instrumente umzusetzen, hindern sie jedoch voranzugehen. Es ist höchste Zeit, dass sich das ändert. Denn jede neue Industrieanlage muss klimasicher sein - schließlich hat sie eine Laufzeit bis weit über das Jahr 2050 hinaus. Diese Publikation soll einen Beitrag dazu leisten, richtungssicher investieren zu können.
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: German
    Type: report , doc-type:report
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...