GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Journals
  • Data
  • OceanRep  (94)
  • AGU (American Geophysical Union)  (59)
  • GLOBEC International Project Office  (18)
  • Public Library of Science  (17)
Document type
  • Journals
  • Data
  • OceanRep  (94)
Publisher
  • 1
    Publication Date: 2018-10-11
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-04-26
    Description: The semi-enclosed nature and estuarine characteristics, together with its strongly alternating bathymetry, make the Baltic Sea prone to much stronger interannual variations in the abiotic environment, than other spawning habitats of Atlantic cod (Gadus morhua). Processes determining salinity and oxygen conditions in the basins are influenced both by long term gradual climate change, e.g. global warming, but also by short-term meteorological variations and events. Specifically one main factor influencing cod spawning conditions, the advection of highly saline and well-oxygenated water masses from the North Sea, is observed in irregular frequencies and causes strong interannual variations in stock productivity. This study investigates the possibility to use the available hydrographic process knowledge to predict the annual spawning conditions for Eastern Baltic cod in its most important spawning ground, the Bornholm Basin, only by salinity measurements from a specific location in the western Baltic. Such a prediction could serve as an environmental early warning indicator to inform stock assessment and management. Here we used a hydrodynamic model to hindcast hydrographic property fields for the last 40+ years. High and significant correlations were found for months early in the year between the 33m salinity level in the Arkona Basin and the oxygen-dependent cod spawning environment in the Bornholm Basin. Direct prediction of the Eastern Baltic cod egg survival in the Bornholm Basin based on salinity values in the Arkona Basin at the 33 m depth level is shown to be possible for eggs spawned by mid-age and young females, which currently predominate the stock structure. We recommend to routinely perform short-term predictions of the Eastern Baltic cod spawning environment, in order to generate environmental information highly relevant for stock dynamics. Our statistical approach offers the opportunity to make best use of permanently existing infrastructure in the western Baltic to timely provide scientific knowledge on the spawning conditions of Eastern Baltic cod. Furthermore it could be a tool to assist ecosystem-based fisheries management with a cost-effective implementation by including the short term predictions as a simple indicator in the annual assessments.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-10-11
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-02-08
    Description: Coral bleaching continues to be one of the most devastating and immediate impacts of climate change on coral reef ecosystems worldwide. In 2015, a major bleaching event was declared as the “3rd global coral bleaching event” by the United States National Oceanic and Atmospheric Administration, impacting a large number of reefs in every major ocean. The Red Sea was no exception, and we present herein in situ observations of the status of coral reefs in the central Saudi Arabian Red Sea from September 2015, following extended periods of high temperatures reaching upwards of 32.5C in our study area. We examined eleven reefs using line-intercept transects at three different depths, including all reefs that were surveyed during a previous bleaching event in 2010. Bleaching was most prevalent on inshore reefs (55.6% ± 14.6% of live coral cover exhibited bleaching) and on shallower transects (41% ± 10.2% of live corals surveyed at 5m depth) within reefs. Similar taxonomic groups (e.g., Agariciidae) were affected in 2015 and in 2010. Most interestingly, Acropora and Porites had similar bleaching rates (~30% each) and similar relative coral cover (~7% each) across all reefs in 2015. Coral genera with the highest levels of bleaching (〉60%) were also among the rarest (〈1% of coral cover) in 2015. While this bodes well for the relative retention of coral cover, it may ultimately lead to decreased species richness, often considered an important component of a healthy coral reef. The resultant long-term changes in these coral reef communities remain to be seen.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: other
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    GLOBEC International Project Office
    In:  GLOBEC International Newsletter, 8 (2). pp. 20-21.
    Publication Date: 2018-10-10
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-02-08
    Description: Forecasting and early warning systems are important investments to protect lives, properties and livelihood. While early warning systems are frequently used to predict the magnitude, location and timing of potentially damaging events, these systems rarely provide impact estimates, such as the expected amount and distribution of physical damage, human consequences, disruption of services or financial loss. Complementing early warning systems with impact forecasts has a two‐fold advantage: it would provide decision makers with richer information to take informed decisions about emergency measures, and focus the attention of different disciplines on a common target. This would allow capitalizing on synergies between different disciplines and boosting the development of multi‐hazard early warning systems. This review discusses the state‐of‐the‐art in impact forecasting for a wide range of natural hazards. We outline the added value of impact‐based warnings compared to hazard forecasting for the emergency phase, indicate challenges and pitfalls, and synthesize the review results across hazard types most relevant for Europe. Plain language summary Forecasting and early warning systems are important investments to protect lives, properties and livelihood. While such systems are frequently used to predict the magnitude, location and timing of potentially damaging events, they rarely provide impact estimates, such as the expected physical damage, human consequences, disruption of services or financial loss. Extending hazard forecast systems to include impact estimates promises many benefits for the emergency phase, for instance, for organising evacuations. We review and compare the state‐of‐the‐art of impact forcasting across a wide range of natural hazards, and outline opportunities and key challenges for research and development of impact forecasting.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-02-07
    Description: Accurately predicting future ocean acidification (OA) conditions is crucial for advancing OA research at regional and global scales, and guiding society's mitigation and adaptation efforts. This study presents a new model-data fusion product covering 10 global surface OA indicators based on 14 Earth System Models (ESMs) from the Coupled Model Intercomparison Project Phase 6 (CMIP6), along with three recent observational ocean carbon data products. The indicators include fugacity of carbon dioxide, pH on total scale, total hydrogen ion content, free hydrogen ion content, carbonate ion content, aragonite saturation state, calcite saturation state, Revelle Factor, total dissolved inorganic carbon content, and total alkalinity content. The evolution of these OA indicators is presented on a global surface ocean 1° × 1° grid as decadal averages every 10 years from preindustrial conditions (1750), through historical conditions (1850–2010), and to five future Shared Socioeconomic Pathways (2020–2100): SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5. These OA trajectories represent an improvement over previous OA data products with respect to data quantity, spatial and temporal coverage, diversity of the underlying data and model simulations, and the provided SSPs. The generated data product offers a state-of-the-art research and management tool for the 21st century under the combined stressors of global climate change and ocean acidification. The gridded data product is available in NetCDF at the National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Information: https://www.ncei.noaa.gov/data/oceans/ncei/ocads/metadata/0259391.html, and global maps of these indicators are available in jpeg at: https://www.ncei.noaa.gov/access/ocean-carbon-acidification-data-system/synthesis/surface-oa-indicators.html. Key Points: - This study presents the evolution of 10 ocean acidification (OA) indicators in the global surface ocean from 1750 to 2100 - By leveraging 14 Earth System Models (ESMs) and the latest observational data, it represents a significant advancement in OA projections - This inter-model comparison effort showcases the overall agreements among different ESMs in projecting surface ocean carbon variables
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-02-08
    Description: Ocean deoxygenation is a threat to marine ecosystems. We evaluated the potential of two ocean intervention technologies, i.e. “artificial downwelling (AD)” and “artificial upwelling (AU)”, for remedying the expansion of Oxygen Deficient Zones (ODZs). The model‐based assessment simulated AD and AU implementations for 80 years along the eastern Pacific ODZ. When AD was simulated by pumping surface seawater to the 178 ~ 457 m depth range of the ODZ, vertically integrated oxygen increased by up to 4.5% in the deployment region. Pumping water from 457 m depth to the surface (i.e. AU), where it can equilibrate with the atmosphere, increased the vertically integrated oxygen by 1.03%. However, both simulated AD and AU increased biological production via enhanced nutrient supply to the sea surface, resulting in enhanced export production and subsequent aerobic remineralization also outside of the actual implementation region, and an ultimate net decline of global oceanic oxygen.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    GLOBEC International Project Office
    In:  GLOBEC International Newsletter, 13 (2). pp. 66-67.
    Publication Date: 2018-10-11
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-01-31
    Description: Gelatinous zooplankton (Cnidaria, Ctenophora, and Urochordata, namely, Thaliacea) are ubiquitous members of plankton communities linking primary production to higher trophic levels and the deep ocean by serving as food and transferring “jelly‐carbon” (jelly‐C) upon bloom collapse. Global biomass within the upper 200 m reaches 0.038 Pg C, which, with a 2–12 months life span, serves as the lower limit for annual jelly‐C production. Using over 90,000 data points from 1934 to 2011 from the Jellyfish Database Initiative as an indication of global biomass (JeDI: http://jedi.nceas.ucsb.edu, http://www.bco‐dmo.org/dataset/526852), upper ocean jelly‐C biomass and production estimates, organism vertical migration, jelly‐C sinking rates, and water column temperature profiles from GLODAPv2, we quantitatively estimate jelly‐C transfer efficiency based on Longhurst Provinces. From the upper 200 m production estimate of 0.038 Pg C year−1, 59–72% reaches 500 m, 46–54% reaches 1,000 m, 43–48% reaches 2,000 m, 32–40% reaches 3,000 m, and 25–33% reaches 4,500 m. This translates into ~0.03, 0.02, 0.01, and 0.01 Pg C year−1, transferred down to 500, 1,000, 2,000, and 4,500 m, respectively. Jelly‐C fluxes and transfer efficiencies can occasionally exceed phytodetrital‐based sediment trap estimates in localized open ocean and continental shelves areas under large gelatinous blooms or jelly‐C mass deposition events, but this remains ephemeral and transient in nature. This transfer of fast and permanently exported carbon reaching the ocean interior via jelly‐C constitutes an important component of the global biological soft‐tissue pump, and should be addressed in ocean biogeochemical models, in particular, at the local and regional scale.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...