GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Alfred Wegener Institute for Polar and Marine Research  (9)
  • Nature Research  (6)
  • AGU (American Geophysical Union)  (5)
  • 2015-2019  (20)
  • 2019  (20)
  • 1
    Publication Date: 2022-01-31
    Description: Ecological impact of global change is generated by multiple synchronous or asynchronous drivers which interact with each other and with intraspecific variability of sensitivities. In three near-natural experiments, we explored response correlations of full-sibling germling families of the seaweed Fucus vesiculosus towards four global change drivers: elevated CO2 (ocean acidification, OA), ocean warming (OW), combined OA and warming (OAW), nutrient enrichment and hypoxic upwelling. Among families, performance responses to OA and OW as well as to OAW and nutrient enrichment correlated positively whereas performance responses to OAW and hypoxia anti-correlated. This indicates (i) that families robust to one of the three drivers (OA, OW, nutrients) will also not suffer from the two other shifts, and vice versa and (ii) families benefitting from OAW will more easily succumb to hypoxia. Our results may imply that selection under either OA, OW or eutrophication would enhance performance under the other two drivers but simultaneously render the population more susceptible to hypoxia. We conclude that intraspecific response correlations have a high potential to boost or hinder adaptation to multifactorial global change scenarios.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-01-31
    Description: Gelatinous zooplankton (Cnidaria, Ctenophora, and Urochordata, namely, Thaliacea) are ubiquitous members of plankton communities linking primary production to higher trophic levels and the deep ocean by serving as food and transferring “jelly‐carbon” (jelly‐C) upon bloom collapse. Global biomass within the upper 200 m reaches 0.038 Pg C, which, with a 2–12 months life span, serves as the lower limit for annual jelly‐C production. Using over 90,000 data points from 1934 to 2011 from the Jellyfish Database Initiative as an indication of global biomass (JeDI: http://jedi.nceas.ucsb.edu, http://www.bco‐dmo.org/dataset/526852), upper ocean jelly‐C biomass and production estimates, organism vertical migration, jelly‐C sinking rates, and water column temperature profiles from GLODAPv2, we quantitatively estimate jelly‐C transfer efficiency based on Longhurst Provinces. From the upper 200 m production estimate of 0.038 Pg C year−1, 59–72% reaches 500 m, 46–54% reaches 1,000 m, 43–48% reaches 2,000 m, 32–40% reaches 3,000 m, and 25–33% reaches 4,500 m. This translates into ~0.03, 0.02, 0.01, and 0.01 Pg C year−1, transferred down to 500, 1,000, 2,000, and 4,500 m, respectively. Jelly‐C fluxes and transfer efficiencies can occasionally exceed phytodetrital‐based sediment trap estimates in localized open ocean and continental shelves areas under large gelatinous blooms or jelly‐C mass deposition events, but this remains ephemeral and transient in nature. This transfer of fast and permanently exported carbon reaching the ocean interior via jelly‐C constitutes an important component of the global biological soft‐tissue pump, and should be addressed in ocean biogeochemical models, in particular, at the local and regional scale.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Alfred Wegener Institute for Polar and Marine Research
    In:  EPIC3Berichte zur Polar- und Meeresforschung = Reports on polar and marine research, Bremerhaven, Alfred Wegener Institute for Polar and Marine Research, 726, 72 p., ISSN: 1866-3192
    Publication Date: 2019-04-02
    Repository Name: EPIC Alfred Wegener Institut
    Type: "Berichte zur Polar- und Meeresforschung" , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Alfred Wegener Institute for Polar and Marine Research
    In:  EPIC3Berichte zur Polar- und Meeresforschung = Reports on polar and marine research, Bremerhaven, Alfred Wegener Institute for Polar and Marine Research, 733, 143 p., ISSN: 1866-3192
    Publication Date: 2019-12-03
    Repository Name: EPIC Alfred Wegener Institut
    Type: "Berichte zur Polar- und Meeresforschung" , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-03-09
    Description: The Weddell Gyre (WG) is one of the main oceanographic features of the Southern Ocean south of the Antarctic Circumpolar Current which plays an influential role in global ocean circulation as well as gas exchange with the atmosphere. We review the state‐of‐the art knowledge concerning the WG from an interdisciplinary perspective, uncovering critical aspects needed to understand this system's role in shaping the future evolution of oceanic heat and carbon uptake over the next decades. The main limitations in our knowledge are related to the conditions in this extreme and remote environment, where the polar night, very low air temperatures, and presence of sea ice year‐round hamper field and remotely sensed measurements. We highlight the importance of winter and under‐ice conditions in the southern WG, the role that new technology will play to overcome present‐day sampling limitations, the importance of the WG connectivity to the low‐latitude oceans and atmosphere, and the expected intensification of the WG circulation as the westerly winds intensify. Greater international cooperation is needed to define key sampling locations that can be visited by any research vessel in the region. Existing transects sampled since the 1980s along the Prime Meridian and along an East‐West section at ~62°S should be maintained with regularity to provide answers to the relevant questions. This approach will provide long‐term data to determine trends and will improve representation of processes for regional, Antarctic‐wide, and global modeling efforts—thereby enhancing predictions of the WG in global ocean circulation and climate.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Alfred Wegener Institute for Polar and Marine Research
    In:  EPIC3Berichte zur Polar- und Meeresforschung = Reports on polar and marine research, Bremerhaven, Alfred Wegener Institute for Polar and Marine Research, 731, 54 p., ISSN: 1866-3192
    Publication Date: 2019-04-11
    Repository Name: EPIC Alfred Wegener Institut
    Type: "Berichte zur Polar- und Meeresforschung" , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-01-31
    Description: Predictive species distribution models are mostly based on statistical dependence between environmental and distributional data and therefore may fail to account for physiological limits and biological interactions that are fundamental when modelling species distributions under future climate conditions. Here, we developed a state-of-the-art method integrating biological theory with survey and experimental data in a way that allows us to explicitly model both physical tolerance limits of species and inherent natural variability in regional conditions and thereby improve the reliability of species distribution predictions under future climate conditions. By using a macroalga-herbivore association (Fucus vesiculosus - Idotea balthica) as a case study, we illustrated how salinity reduction and temperature increase under future climate conditions may significantly reduce the occurrence and biomass of these important coastal species. Moreover, we showed that the reduction of herbivore occurrence is linked to reduction of their host macroalgae. Spatial predictive modelling and experimental biology have been traditionally seen as separate fields but stronger interlinkages between these disciplines can improve species distribution projections under climate change. Experiments enable qualitative prior knowledge to be defined and identify cause-effect relationships, and thereby better foresee alterations in ecosystem structure and functioning under future climate conditions that are not necessarily seen in projections based on non-causal statistical relationships alone.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Alfred Wegener Institute for Polar and Marine Research
    In:  EPIC3Berichte zur Polar- und Meeresforschung = Reports on polar and marine research, Bremerhaven, Alfred Wegener Institute for Polar and Marine Research, 737, 28 p., ISSN: 1866-3192
    Publication Date: 2019-12-20
    Repository Name: EPIC Alfred Wegener Institut
    Type: "Berichte zur Polar- und Meeresforschung" , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Alfred Wegener Institute for Polar and Marine Research
    In:  EPIC3Berichte zur Polar- und Meeresforschung = Reports on polar and marine research, Bremerhaven, Alfred Wegener Institute for Polar and Marine Research, 732, 205 p., ISSN: 1866-3192
    Publication Date: 2019-09-18
    Repository Name: EPIC Alfred Wegener Institut
    Type: "Berichte zur Polar- und Meeresforschung" , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-01-31
    Description: Prediction and Research Moored Array in the Tropical Atlantic (PIRATA) is a multinational program initiated in 1997 in the tropical Atlantic to improve our understanding and ability to predict ocean-atmosphere variability. PIRATA consists of a network of moored buoys providing meteorological and oceanographic data transmitted in real time to address fundamental scientific questions as well as societal needs. The network is maintained through dedicated yearly cruises, which allow for extensive complementary shipboard measurements and provide platforms for deployment of other components of the Tropical Atlantic Observing System. This paper describes network enhancements, scientific accomplishments and successes obtained from the last 10 years of observations, and additional results enabled by cooperation with other national and international programs. Capacity building activities and the role of PIRATA in a future Tropical Atlantic Observing System that is presently being optimized are also described.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...