GLORIA

GEOMAR Library Ocean Research Information Access

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • OceanRep  (15)
  • AtlantOS  (6)
  • MDPI  (3)
  • ECO2 Project Office  (2)
  • GEOMAR  (2)
  • ICES
  • Oxford Univ. Press
  • 2015-2019  (10)
  • 2010-2014  (5)
  • 2019  (10)
  • 2014  (5)
Publikationsart
Erscheinungszeitraum
  • 2015-2019  (10)
  • 2010-2014  (5)
Jahr
  • 1
    facet.materialart.
    Unbekannt
    ECO2 Project Office
    In:  ECO2 Deliverable, D5.2 . ECO2 Project Office, Kiel, Germany, 13 pp.
    Publikationsdatum: 2019-03-11
    Beschreibung: Public fear for environmental and health impacts or potential leakage of CO2 from geological reservoirs is among the reasons why over the past decade CCS has not yet been deployed on a large enough scale so as to meaningfully contribute to mitigate climate change. Storage of CO2 under the seabed moves this climate mitigation option away from inhabited areas and could thereby take away some of the opposition towards this technology. Given that in the event of CO2 leakage for sub-seabed CCS the ocean would function as buffer for receiving this greenhouse gas, rather than the atmosphere, offshore CCS could particularly address concerns over the climatic impacts of CO2 seepage. In this paper we point out that recent geological studies confirm that leakage for individual offshore CCS operations may be highly unlikely from a technical point of view, if storage sites are well chosen, well managed and well monitored. But we argue that on a global long-term scale, for an ensemble of thousands or millions of storage sites, leakage of CO2 could take place in certain cases and/or countries for e.g. economic, institutional, legal or safety cultural reasons. We investigated what the impact could be in terms of temperature increase and ocean acidification if leakage would nevertheless occur, and addressed the question what the relative roles could be of on- and offshore CCS if mankind desires to divert the atmospheric damages resulting from climate change. For this purpose, we constructed a top-down energy-environment-economy model, with which we performed a probabilistic cost-benefit analysis of climate change mitigation with on- and offshore CCS as specific CO2 abatement options. One of our main conclusions is that even if there is non-zero leakage for CCS activity on a global scale, there is high probability that both onshore and offshore CCS could – on economic grounds – still account for anywhere between 20% and 80% of all future CO2 abatement efforts under a broad range of CCS cost assumptions.
    Materialart: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    facet.materialart.
    Unbekannt
    GEOMAR
    In:  GEOMAR, Kiel, Germany, 80 pp.
    Publikationsdatum: 2021-02-25
    Beschreibung: Abstract Legal requirement in Europe asks for Ecosystem-Based Fisheries Management (EBFM) in European seas, including considerations of trophic interactions and minimization of negative impacts of fishing on food webs and ecosystem functioning. Focusing on the interaction between fisheries and ecosystem components, the trophic model presented here shows for the first time the “big picture” of the western Baltic Sea (WBS) food web by quantifying structure and flows between all trophic elements and the impact of fisheries that were and are active in the area, based on best available recent data. Model results show that fishing pressures exerted on the WBS since the early nineties of the past century forces not only top predators such as harbour porpoises and seals but also cod and other demersal fish to heavily compete for fish as food and to cover their dietary needs by shifting to organisms lower in the trophic web, mainly to benthic macrofauna and / or search for suitable prey in adjacent ecosystems such as Kattegat, Skagerrak, central Baltic Sea and North Sea. While common sense implementations of EBFM have been proposed, such as fishing all stocks below Fmsy and reducing fishing pressure even further for forage fish such as herring and sprat, few studies compared such fishing to alternative scenarios. Different options for EBFM, with regards to recovery of depleted stocks and sustainable future catches, are presented here based on the WBS ecosystem model, the legal framework given by the new Common Fisheries Policy (CFP) and the Marine Strategy Framework Directive (MSFD) of the European Union. The model explores four legally valid future fishery scenarios: 1) business as usual, 2) maximum sustainable fishing (F = Fmsy), 3) half of Fmsy, and 4) EBFM with F = 0.5 Fmsy for forage fish and F = 0.8 Fmsy for other fish. In addition, a “No-fishing” scenario demonstrates, that neither individual stocks nor the whole system would collapse when all fishing activities from 2017 on would cease. Simulations show that “Business as usual” would perpetuate low 2016 catches from depleted stocks in an unstable ecosystem where endangered species may be lost. In contrast, an “EBFM” scenario - with herring and sprat fished at 0.5 Fmsy level and cod and other stocks fished at 0.8 Fmsy level - allows the recovery of all stocks with strongly increased catches close to the maximum (at Fmsy) for cod and flatfish and catches similar to the 2016 level for herring and sprat but with strongly reduced fishing effort. Model and methodology presented here are considered suitable to assess MSFD Criterion D4C2 in the WBS.
    Materialart: Report , NonPeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2021-01-08
    Beschreibung: Arctic and subarctic regions are sensitive to climate change and, reversely, provide dramatic feedbacks to the global climate. With a focus on discovering paleoclimate and paleoceanographic evolution in the Arctic and Northwest Pacific Oceans during the last 20,000 years, we proposed this German–Sino cooperation program according to the announcement “Federal Ministry of Education and Research (BMBF) of the Federal Republic of Germany for a German–Sino cooperation program in the marine and polar research”. Our proposed program integrates the advantages of the Arctic and Subarctic marine sediment studies in AWI (Alfred Wegener Institute) and FIO (First Institute of Oceanography). For the first time, the collection of sediment cores can cover all climatological key regions in the Arctic and Northwest Pacific Oceans. Furthermore, the climate modeling work at AWI enables a “Data-Model Syntheses”, which are crucial for exploring the underlying mechanisms of observed changes in proxy records.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    facet.materialart.
    Unbekannt
    AtlantOS
    In:  AtlantOS Deliverable, D5.1 . AtlantOS, 39 pp.
    Publikationsdatum: 2019-05-28
    Beschreibung: Report on the current observing status in the North Atlantic subpolar gyre and the South Atlantic subtropical gyre, containing the results of the investigation on regional observing activities, systems, and connectivity in relation to climate and ecosystems
    Materialart: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2019-09-23
    Beschreibung: Research to date has suggested that both individual marine species and ecological processes are expected to exhibit diverse responses to the environmental effects of climate change. Evolutionary responses can occur on rapid (ecological) timescales, and yet studies typically do not consider the role that adaptive evolution will play in modulating biological responses to climate change. Investigations into such responses have typically been focused at particular biological levels (e.g., cellular, population, community), often lacking interactions among levels. Since all levels of biological organisation are sensitive to global climate change, there is a need to elucidate how different processes and hierarchical interactions will influence species fitness. Therefore, predicting the responses of communities and populations to global change will require multidisciplinary efforts across multiple levels of hierarchy, from the genetic and cellular to communities and ecosystems. Eventually, this may allow us to establish the role that acclimatisation and adaptation will play in determining marine community structures in future scenarios.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    facet.materialart.
    Unbekannt
    ICES
    In:  In: Report of the Joint CIESM/ICES Workshop on Mnemiopsis Science (JWMS). ICES Council Meeting Papers, SSGHIE:14 . ICES, Kopenhagen, Denmark, pp. 11-14.
    Publikationsdatum: 2021-02-15
    Materialart: Book chapter , NonPeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    facet.materialart.
    Unbekannt
    AtlantOS
    In:  AtlantOS Deliverable, D8.12 . AtlantOS, 16 pp.
    Publikationsdatum: 2019-05-28
    Beschreibung: Assessment of the observing system fitness for storm surge forecasting and warning in the Atlantic
    Materialart: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2022-01-31
    Beschreibung: We investigated the plankton community composition and abundance in the urban marine environment of Thessaloniki Bay. We collected water samples weekly from March 2017 to February 2018 at the coastal front of Thessaloniki city center and monthly samples from three other inshore sites along the urban front of the bay. During the study period, conspicuous and successive phytoplankton blooms, dominated by known mucilage-producing diatoms alternated with red tide events formed by the dinoflagellates Noctiluca scintillans and Spatulodinium pseudonoctiluca, and an extensive mucilage aggregate phenomenon, which appeared in late June 2017. At least 11 known harmful algae were identified throughout the study, with the increase in the abundance of the known harmful dinoflagellate Dinophysis cf. acuminata occurring in October and November 2017. Finally, a red tide caused by the photosynthetic ciliate Mesodinium rubrum on December 2017 was conspicuous throughout the sampling sites. The above-mentioned harmful blooms and red tides were linked to high nutrient concentrations and eutrophication. This paper provides an overview of eutrophication impacts on the response of the unicellular eukaryotic plankton organisms and their impact on water quality and ecosystem services
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    facet.materialart.
    Unbekannt
    AtlantOS
    In:  AtlantOS Deliverable, D11.7 . AtlantOS, 75 pp.
    Publikationsdatum: 2019-05-28
    Beschreibung: Prior to the 4th annual AtlantOS meeting in month 48 a project progress report for the external project boards (EB and ISTAB) will be prepared to enable them to be as good as possible prepared for the meeting and to ensure consequently that AtlantOS receives as constructive as possible recommendations from the boards. This report, together with the two external summary board meeting reports, which will be requested from the EB and ISTAB, will represent D11.7.
    Materialart: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    facet.materialart.
    Unbekannt
    ECO2 Project Office
    In:  ECO2 Deliverable, D5.3 . ECO2 Project Office, Kiel, Germany, 94 pp.
    Publikationsdatum: 2019-03-11
    Materialart: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...