GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Journals
  • Articles  (26)
  • Open Access-Papers  (26)
  • ELSEVIER SCIENCE BV  (8)
  • SPRINGER  (7)
  • Springer  (7)
  • OXFORD UNIV PRESS  (4)
  • 2015-2019  (26)
  • 1
    facet.materialart.
    Unknown
    ELSEVIER SCIENCE BV
    In:  EPIC3Journal of Experimental Marine Biology and Ecology, ELSEVIER SCIENCE BV, 497, pp. 219-229, ISSN: 0022-0981
    Publication Date: 2017-11-21
    Description: According to climate models, coastal ecosystems will face an increased frequency of heat waves and increased turbidity due to terrestrial sediment run-off induced by increasing precipitation. Several studies have examined the effects of heat waves and turbidity separately, whereas this study analysed the individual effects of both stressors as well as their interaction, because stressors affect communities differently when acting in combination. Using a factorial experimental design, we simulated heat waves (22 °C and 26 °C compared to an 18 °C control) and turbidity (sediment addition). The response of the phytoplankton community was analysed for the aggregate parameters biovolume and diversity index (H′), as well as for community composition. Heat waves had a significant negative effect on biovolume, whereas turbidity tended to affect biovolume positively. Repeated measures ANOVA revealed significant interactions of heat waves and turbidity for H′ and community composition. Strong heat waves (26 °C) alleviated the otherwise positive effect of turbidity on H′, i.e. highest diversity remained in the turbid control. Diatoms gained dominance in the control and the 22 °C heat wave treatment with Cylindrotheca closterium being the successful competitor. At 26 °C this species was lost and small flagellates dominated the experimental communities. Future increases in heat wave intensity and frequency may thus induce major changes in phytoplankton community structure whereas algae might profit from increased turbidity as an additional source of nutrients.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Springer
    In:  EPIC3Building Bridges at the Science-Stakeholder Interface, Building Bridges at the Science-Stakeholder Interface, Springer, 133 p., pp. 73-78, ISBN: 978-3-319-75919-7
    Publication Date: 2019-08-15
    Repository Name: EPIC Alfred Wegener Institut
    Type: Inbook , peerRev , info:eu-repo/semantics/other
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    OXFORD UNIV PRESS
    In:  EPIC3ICES Journal of Marine Science, OXFORD UNIV PRESS, ISSN: 1054-3139
    Publication Date: 2017-11-22
    Description: Recent events and trends in international relations are making it necessary for scientists to design their projects in ways that can integrate disciplinary perspectives and learn how to communicate their results in governance processes. Some examples of settings in which such skills would be needed are the debates about the political and legal relevance of the “Anthropocene” as a concept, the establishment and implementation of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES), the recent International Court of Justice’s decision on what constitutes “scientific purpose” under the Whaling Convention, and the ongoing international efforts to regulate deep seabed mining activities. These events reveal an acceleration of growing environmental, distributional, and geostrategic conflicts over ocean resources which are changing the character of marine research. For some time now marine sciences have recognized the interdependence of social and ecological systems and the cumulative effects of multiple environmental pressures. In addition, we observe that the relationship between science and policymaking is rapidly changing in a process which we refer to here as the internationalization of knowledge, and that scientific research activities and results are progressively being internationally contested. Altogether these developments constitute extrinsic constraints that render transcending disciplinary boundaries a conditio sine qua non for future marine research. Better comprehension of these trends and their implications may help us to understand marine science’s functioning in the near future, particularly the relationship between disciplines involved.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    ELSEVIER SCIENCE BV
    In:  EPIC3Journal of Sea Research, ELSEVIER SCIENCE BV, 103, pp. 103-112, ISSN: 1385-1101
    Publication Date: 2017-01-26
    Description: Variability in upwelling events may lead to periods of constrained food availability in the northern Benguela upwelling system (NBUS), thereby affecting the physiological state and metabolic activity of euphausiids. Most attention has so far been paid to seasonal effects but little is known about regional variability.Metabolic activity (expressed by respiration and excretion rates) and physiological state (expressed by reproductive effort and moult activity) in Euphausia hanseni were examined at different stations during austral summer (minimum upwelling) and austral winter (maximum upwelling). Overall, regional differences in physiological state, influencing metabolic activity, were greater than seasonal ones, indicating favourable conditions for growth and reproduction year-round. Higher respiration rateswere found for females in more advanced stages of sexual development.Moult stage did not affect oxygen consumption rates, however. The physiological state of E. hanseni at the time of capture may serve as ameaningful indicator of the associated hydrographic conditions in the NBUS,to be further used in eco-system analysis on seasonal or long-term time scales. A latitudinal comparison of species highlights the extraordinary physiological plasticity of euphausiids.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-12-15
    Description: The North Water (NOW) polynya is one of the most productive marine areas of the Arctic and an important breeding area for millions of seabirds. There is, however, little information on the dynamics of the polynya or the bird populations over the long term. Here, we used sediment archives from a lake and peat deposits along the Greenland coast of the NOW polynya to track long-term patterns in the dynamics of the seabird populations. Radiocarbon dates show that the thick-billed murre (Uria lomvia) and the common eider (Somateria mollissima) have been present for at least 5500 cal. years. The first recorded arrival of the little auk (Alle alle) was around 4400 cal. years bp at Annikitsoq, with arrival at Qeqertaq (Salve Ø) colony dated to 3600 cal. years bp. Concentrations of cadmium and phosphorus (both abundant in little auk guano) in the lake and peat cores suggest that there was a period of large variation in bird numbers between 2500 and 1500 cal. years bp. The little auk arrival times show a strong accord with past periods of colder climate and with some aspects of human settlement in the area.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    ELSEVIER SCIENCE BV
    In:  EPIC3Journal of Experimental Marine Biology and Ecology, ELSEVIER SCIENCE BV, 497, pp. 61-70, ISSN: 0022-0981
    Publication Date: 2017-10-03
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Springer
    In:  EPIC3Marine Anthropogenic Litter, Marine Anthropogenic Litter, Berlin, Springer, 447 p., pp. 201-227, ISBN: 978-3-319-16510-3
    Publication Date: 2023-06-21
    Description: Microplastics in aquatic ecosystems and especially in the marine environment represent a pollution of increasing scientific and societal concern, thus, meanwhile a substantial number of studies on microplastics exist. Although first steps towards a standardisation of methodologies used for the detection and identification of microplastics in environmental samples are made, the comparability of data on microplastics is currently hampered by a huge variety of different methodologies which result in the generation of data of extremely different quality and resolution. This chapter reviews the methodology presently used for assessing the concentration of microplastics in the marine environment with focus on the most convenient techniques and approaches. After an overview of non-selective sampling approaches, sample processing and treatment in the laboratory, the reader is introduced to the currently applied techniques for the identification and quantification of microplastics. The subsequent case study on microplastics in sediment samples from the North Sea measured with focal plane array (FPA)-based micro-Fourier transform infrared (micro-FTIR) spectroscopy shows that only 1.4 % of the particles visually resembling microplastics were of synthetic polymer origin. This finding emphasizes the importance of verifying the synthetic polymer origin of potential microplastics. Thus, a burning issue concerning current microplastic research is the generation of standards that allow for the assessment of reliable data on concentrations of microscopic plastic particles and the involved polymers with analytical laboratory techniques such as micro-FTIR or micro-Raman spectroscopy.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Inbook , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-11-09
    Description: Protists (microbial eukaryotes) are diverse, major components of marine ecosystems, and are fundamental to ecosystem services. In the last 10 years, molecular studies have highlighted substantial novel diversity in marine systems including sequences with no taxonomic context. At the same time, many known protists remain without a DNA identity. Since the majority of pelagic protists are too small to identify by light microscopy, most are neither comprehensively or regularly taken into account, particularly in Long-term Ecological Research Sites. This potentially undermines the quality of research and the accuracy of predictions about biological species shifts in a changing environment. The ICES Working Group for Phytoplankton and Microbial Ecology conducted a questionnaire survey in 2013–2014 on methods and identification of protists using molecular methods plus a literature review of protist molecular diversity studies. The results revealed an increased use of high-throughput sequencing methods and a recognition that sequence data enhance the overall datasets on protist species composition. However, we found only a few long-term molecular studies and noticed a lack of integration between microscopic and molecular methods. Here, we discuss and put forward recommendations to improve and make molecular methods more accessible to Long-term Ecological Research Site investigators.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-07-20
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    OXFORD UNIV PRESS
    In:  EPIC3ICES Journal of Marine Science, OXFORD UNIV PRESS, 73(3), pp. 927-936, ISSN: 1054-3139
    Publication Date: 2017-06-07
    Description: It is currently under debate whether organisms that regulate their acid–base status under environmental hypercapnia demand additional energy. This could impair animal fitness, but might be compensated for via increased ingestion rates when food is available. No data are yet available for dominant Calanus spp. from boreal and Arctic waters. To fill this gap, we incubated Calanus glacialis at 390, 1120, and 3000 µatm for 16 d with Thalassiosira weissflogii (diatom) as food source on-board RV Polarstern in Fram Strait in 2012. Every 4 d copepods were subsampled from all CO2 treatments and clearance and ingestion rates were determined. During the SOPRAN mesocosm experiment in Bergen, Norway, 2011, we weekly collected Calanus finmarchicus from mesocosms initially adjusted to 390 and 3000 matm CO2 and measured grazing at low and high pCO2. In addition, copepods were deep frozen for body mass analyses. Elevated pCO2 did not directly affect grazing activities and body mass, suggesting that the copepods did not have additional energy demands for coping with acidification, neither during long-term exposure nor after immediate changes in pCO2. Shifts in seawater pH thus do not seem to challenge these copepod species.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...