GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Online-Ressource
    Online-Ressource
    Cham :Springer International Publishing AG,
    Schlagwort(e): Plants -- Effect of stress on. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (310 pages)
    Ausgabe: 1st ed.
    ISBN: 9783319067100
    DDC: 571.2
    Sprache: Englisch
    Anmerkung: Intro -- Preface -- Contents -- Contributors -- Part I Nitric Oxide: Metabolism, Identificationand Detection -- 1 An Update to the Understanding of Nitric Oxide Metabolism in Plants -- Abstract -- 1.1…Introduction -- 1.1.1 Brief Review of the Chemistry of Nitrogen-Active Species -- 1.2…Sources of NO in Plants: An Overview -- 1.2.1 Is Chloroplast a Source of NO? -- 1.2.2 NO Sources Under Abiotic Stress -- 1.3…Concluding Remarks -- Acknowledgments -- References -- 2 Biosynthesis of Nitric Oxide in Plants -- Abstract -- 2.1…Introduction -- 2.2…Mechanisms of Reductive NO Synthesis -- 2.2.1 Reductive NO Synthesis by Nitrate Reductase -- 2.2.2 Reductive NO Synthesis by the Mitochondrial Electron Transport Chain -- 2.2.3 Reductive NO Generation by Heme Containing Proteins -- 2.3…Mechanisms of Oxidative NO Synthesis -- 2.3.1 Oxidative NO Synthesis from l-Arginine -- 2.3.2 The Enigmatic Plant-Type NOS -- 2.3.3 Other Forms of Oxidative NO Synthesis -- 2.4…Nonenzymatic NO Release -- 2.5…Control of NO Synthesis in the Plant Cell -- 2.5.1 Control of Reductive and Oxidative NO Synthesis -- 2.5.2 Hormonal Control of NO Synthesis -- 2.6…Summary and Open Debates -- Acknowledgment -- 3 Function of Peroxisomes as a Cellular Source of Nitric Oxide and Other Reactive Nitrogen Species -- Abstract -- 3.1…Introduction -- 3.2…Functions of NO in Plants -- 3.3…Generation of NO in Plants and Subcellular Sites of Production -- 3.4…Presence of NOS Activity in Peroxisomes -- 3.5…Detection of NO Generation in Peroxisomes -- 3.5.1 Effect of Senescence -- 3.5.2 Effect of Metal Stress -- 3.6…Demonstration of in vivo NO Production in Peroxisomes -- 3.7…S-Nitrosylation and Nitration of Proteins in Peroxisomes -- 3.8…Conclusions -- Acknowledgments -- References -- 4 Role of Plant Mitochondria in Nitric Oxide Homeostasis During Oxygen Deficiency -- Abstract -- 4.1…Introduction. , 4.2…Signaling Functions of NO During O2 Deficiency: Plant Mitochondria As Important NO Targets -- 4.3…Mechanisms of NO Synthesis During O2 Deficiency: The Increasing Importance of Mitochondrial Nitrite Reduction -- 4.4…Mechanisms of NO Degradation During O2 Deficiency: The Involvement of Respiratory Proteins and Non-symbiotic Hemoglobins -- 4.5…Nitrogen Nutrition and Plant Tolerance to O2 Deficiency -- 4.6…Conclusion -- Acknowledgment -- References -- 5 Production of Nitric Oxide by Marine Unicellular Red Tide Phytoplankton, Chattonella marina -- Abstract -- 5.1…Introduction -- 5.2…Synthesis of NO in C. marina Cell Suspension -- 5.2.1 Chemiluminescence (CL) Reaction -- 5.2.2 Nitrite Determination -- 5.2.3 Fluorescent Probe Detection -- 5.3…Involvement of NO Synthase (NOS) and Nitrate Reductase (NR) in NO Production by C. marina -- 5.4…Conclusion -- References -- 6 Identification of Nitrosylated Proteins (SNO) and Applications in Plants -- Abstract -- 6.1…Introduction -- 6.2…Biotin-Switch and Relatives -- 6.2.1 SNOSID (S--NO Site Identification) -- 6.2.2 His-Tag Switch -- 6.2.3 DyLight Fluor DIGE, S-FLOS/SNO-DIGE, AMCA Switch and ''Fluorescent Switch'' -- 6.2.4 BS-ICAT and SNOCAP -- 6.2.5 SNO-RAC -- 6.2.6 BS on Protein Microarrays -- 6.2.7 SHIPS -- 6.2.8 Biotin/Cys-TMT Switch and SILAC-BS -- 6.3…Methods Using a Direct SNO Reduction -- 6.3.1 Phenylmercury Reduction -- 6.3.2 Phosphine Switch -- 6.3.3 SNO Reduction by Gold Nanoparticules -- 6.3.4 Complementary Approaches to Identify Nitrosothiols -- 6.4…Assessment of Protein Nitrosylation in Plants -- Acknowledgments -- References -- 7 Nitric Oxide: Detection Methods and Possible Roles During Jasmonate-Regulated Stress Response -- Abstract -- 7.1…Introduction -- 7.2…Biological Activities of Nitric Oxide -- 7.3…Methods of NO Detection. , 7.3.1 Detection of NO and NO Measurement in Cell Culture and in Planta -- 7.3.2 Methods of Detection of Nitrosylated Proteins -- 7.3.3 NO Donors and NO Scavengers -- 7.3.4 Reporter Genes -- 7.4…Potentiation of Nitric Oxide and Jasmonates Signaling in Abiotic Stress Responses -- 7.4.1 NO Regulation of JA Signaling, Epigenetics, and Role of microRNAs -- 7.4.2 Roots in the Sensing of Drought and Salt Stresses: A Role of Nitric Oxide and Jasmonates -- 7.5…Conclusion -- References -- 8 S-Nitrosoglutathione Reductase: Key Regulator of Plant Development and Stress Response -- Abstract -- 8.1…Introduction -- 8.2…Reactive Nitrogen Species -- 8.3…GSNO Reductase Controls GSNO Turnover -- 8.4…GSNO Reductase in Animals -- 8.5…GSNO Reductase in Plants -- 8.6…Functions of GSNO Reductase During Plant Development -- 8.7…GSNO Reductase during Stress Response -- 8.7.1 Biotic Stress -- 8.7.2 Abiotic Stress -- 8.8…Conclusions -- Acknowledgments -- References -- 9 Nitro-Fatty Acids: Synthesis, Properties, and Role in Biological System -- Abstract -- 9.1…Introduction -- 9.2…Fatty Acid Nitration -- 9.3…Electrophilic and Therapeutical Properties of NO2-FA -- 9.4…Formation of NO2-FA in Extra Virgin Olive Oil -- 9.5…Potential Pitfalls -- Acknowledgements -- References -- Part II Nitric Oxide: Properties, Modeof Action and Functional Rolein Stress Physiology -- 10 Nitric Oxide and Reactive Nitrogen Species -- Abstract -- 10.1…Introduction -- 10.2…Properties of Nitric Oxide -- 10.3…Chemical Properties of Nitroxyl and Its Donors -- 10.3.1 Biological Reactivity of HNO -- 10.4…Chemical Properties and Donors of Nitrosonium -- 10.4.1 Biological Activity of NO+ -- 10.5…Peroxynitrite -- 10.6…Biotargets of Reactive Nitrogen Species -- 10.6.1 Tyrosine Nitration -- 10.6.2 Nitration of Unsaturated Fatty Acids -- 10.6.3 Protein S-Nitrosylation -- 10.6.4 Metal Nitrosylation. , 10.7…Conclusion -- Acknowledgments -- References -- 11 Nitric Oxide and Other Signaling Molecules: A Cross Talk in Response to Abiotic Stress -- Abstract -- 11.1…Introduction -- 11.2…NO Signal Transduction -- 11.3…NO Interaction with Other Signaling Molecules in Response to Abiotic Stress -- 11.3.1 Interaction of NO with Ca2+ -- 11.3.2 Interaction of NO with H2O2 and ABA -- 11.3.3 Interactions of NO with MAPK, cGMP, and Ethylene -- 11.4…Conclusions and Perspectives -- Acknowledgements -- References -- 12 Cytoprotective Role of Nitric Oxide Under Oxidative Stress -- Abstract -- 12.1…Introduction -- 12.2…The Generation of Reactive Oxygen Species -- 12.3…Physiological Consequences of Oxidative Stress in Plants -- 12.4…NO and Oxidative Stress -- 12.5…Conclusion -- References -- 13 Phytohormones and Nitric Oxide Interactions During Abiotic Stress Responses -- Abstract -- 13.1…Introduction -- 13.2…Phytohormones and Nitric Oxide Interactions Under Abiotic Stress -- 13.2.1 Temperature Stress -- 13.2.2 Drought Stress -- 13.2.3 Salt Stress -- 13.2.4 Heavy Metal Stress -- 13.3…Concluding Remarks -- References -- 14 Tolerance of Plants to Abiotic Stress: A Role of Nitric Oxide and Calcium -- Abstract -- 14.1…Introduction -- 14.2…Cross Talk Between NO and Calcium -- 14.2.1 Stress-Induced Ca2+ Mobilization by NO -- 14.2.2 Mechanism of NO-induced Changes in [Ca2+]cyt -- 14.3…The Ca2+ Signature -- 14.4…Ca2+ Sensing and Signaling -- 14.4.1 Calcium-Binding Proteins (CaBPs) -- 14.4.1.1 Ca2+ Sensor Relays -- 14.4.1.2 Ca2+ Sensor Responders -- 14.4.2 Other Ca2+-Binding Proteins -- 14.5…Elevated Levels of [Ca2+]cyt and NO Synthesis -- 14.6…Ca2+ Homeostasis -- 14.7…Conclusion -- References -- 15 Abiotic Stress Tolerance in Plants: Exploring the Role of Nitric Oxide and Humic Substances -- Abstract -- 15.1…Introduction -- 15.2…Humic Substances. , 15.2.1 Types of Humic Substances -- 15.3…Beneficial Effects of HS on Plant Growth and Mineral Nutrition -- 15.3.1 Indirect Effects of HS -- 15.3.2 Direct Effects of HS -- 15.4…Factors Affecting Action of HS on Plant Growth -- 15.4.1 Extrinsic Factors and HS Action -- 15.4.2 Intrinsic Factors and HS Action -- 15.5…Interactive Role of NO, Other Phytohormones and HS in Plant Root- and Shoot-Growth, and Mineral Nutrition -- 15.5.1 Interactive Role of NO, Other Phytohormones and HS in Plant Root -- 15.5.2 Interactive Role of NO, Other Phytohormones and HS in Plant Shoot -- 15.6…Concluding Remarks and Future Perspectives -- References -- 16 Nitric Oxide in Relation to Plant Signaling and Defense Responses -- Abstract -- 16.1…Introduction -- 16.2…Induction of Nitric Oxide Signaling Pathway by Chitosan -- 16.3…Nitric Oxide Signaling and Defense Responses -- 16.4…Crosstalk Between Abiotic and Biotic Stress Responses -- 16.5…Conclusions and Future Prospects -- Acknowledgment -- References -- 17 The Role of Nitric Oxide in Programmed Cell Death in Higher Plants -- Abstract -- 17.1…Introduction -- 17.2…Evolution of NO and Dual Function During Plant Programmed Cell Death -- 17.3…Effects of NO on Developmental PCD -- 17.4…Role of NO in Hypersensitive Response -- 17.5…Involvement of NO in Abiotic Stress-Induced PCD -- 17.6…Regulation of NO on PCD--Associated Genes Expression -- 17.7…Interaction Between NO and Other Signaling Molecules During Plant PCD -- 17.8…NO Signaling Network in Response to PCD -- 17.9…Control of NO Level in Plant Mitochondrion -- 17.10…Conclusion and Perspectives -- Acknowledgments -- References -- Index.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    Cham :Springer International Publishing AG,
    Schlagwort(e): Plants -- Effect of stress on. ; Nitrogen oxides. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (252 pages)
    Ausgabe: 1st ed.
    ISBN: 9783319178042
    DDC: 571.2
    Sprache: Englisch
    Anmerkung: Intro -- Foreword -- Preface -- Contents -- Part I Nitric Oxide: Properties and Functional Role -- 1 Reactive Nitrogen Species and Nitric Oxide -- Abstract -- 1.1 Introduction -- 1.2 Nitric Oxide -- 1.2.1 Properties of Nitric Oxide -- 1.2.2 Various Roles of NO in Plant Physiology -- 1.3 Peroxynitrite -- 1.3.1 Properties of Peroxynitrite -- 1.3.2 Reactions of ONOO− with Proteins -- 1.3.3 Reactions of ONOO− with Amino Acids -- 1.3.4 Reactions of ONOO− with Lipids -- 1.3.5 Reactions of ONOO− with DNA -- 1.4 Nitrosothiols -- 1.5 Conclusion -- References -- 2 Functional Role of Nitric Oxide Under Abiotic Stress Conditions -- Abstract -- 2.1 Introduction -- 2.2 Nitric Oxide and Abiotic Stress -- 2.2.1 Heavy Metal Toxicity -- 2.2.2 Drought Stress -- 2.2.3 Salinity -- 2.2.4 Heat Stress -- 2.2.5 Cold Stress -- 2.2.6 Ozone -- 2.2.7 UV-B Radiation -- 2.2.8 Flooding -- 2.2.9 Wounding -- 2.3 Conclusion -- References -- 3 Nitric Oxide and Abiotic Stress-Induced Oxidative Stress -- Abstract -- 3.1 Introduction -- 3.1.1 Oxidative Stress and Reactive Oxygen Species -- 3.1.2 Site of ROS Production -- 3.2 Nitric Oxide and Oxidative Stress -- 3.3 Salinity and Nitric Oxide -- 3.4 Drought and Nitric Oxide -- 3.5 Low Temperature and Nitric Oxide -- 3.6 High Temperature and Nitric Oxide -- 3.7 UV-B Radiation and Nitric Oxide -- 3.8 Heavy Metal Stress and Nitric Oxide -- 3.9 Conclusions and Future Projections -- References -- 4 Regulatory Role of Nitric Oxide in Alterations of Morphological Features of Plants Under Abiotic Stress -- Abstract -- 4.1 Introduction -- 4.2 Root and Stem Growth -- 4.3 Germination and Survival -- 4.4 Specialized Morphological Features -- 4.5 Morphological Response of Cotyledons Under Abiotic Stress -- 4.6 Conclusion -- References -- Part II Nitric Oxide and Plant Adaptation to Abiotic Stresses. , 5 Nitric Oxide and High Temperature Stress: A Physiological Perspective -- Abstract -- 5.1 Introduction -- 5.2 Effect of High Temperature Stress on Plants -- 5.2.1 Germination -- 5.2.2 Morphology -- 5.2.3 Flowering -- 5.2.4 Photosynthesis -- 5.3 Source of NO in Plants -- 5.4 Heat Stress and NO Synthesis in Plants -- 5.5 NO and Thermotolerance -- 5.6 NO Signaling: Heat Perception and Mechanism of Thermotolerance -- 5.7 Conclusion -- References -- 6 Nitric Oxide in Drought Stress Signalling and Tolerance in Plants -- Abstract -- 6.1 Introduction -- 6.2 Mechanisms of Adaptation to Drought -- 6.3 Regulation of Genes Under Drought -- 6.4 Nitric Oxide Generation in Plants -- 6.5 Nitric Oxide Signalling in Plants -- 6.6 Effect of Nitric Oxide in Plant Hormone-Mediated Signalling -- 6.7 Crosstalk Between Polyamines and NO -- 6.8 Oxidative Stress Alleviation by Nitric Oxide -- 6.9 NO Mediation of ABA-Induced Stomatal Closure -- 6.10 Promotion of Adventitious Root Growth -- 6.11 Conclusion and Future Prospects -- References -- 7 Nitric Oxide and Plant Hemoglobins Improve the Tolerance of Plants to Hypoxia -- Abstract -- 7.1 Introduction -- 7.2 Plant Hemoglobins: Categories and Function -- 7.3 Properties of Nonsymbiotic Hemoglobins -- 7.3.1 Expression of nsHb-1 -- 7.4 Effect of Hypoxic Stress on Metabolism -- 7.5 Nitric Oxide -- 7.5.1 Production of NO Under Hypoxic Stress -- 7.6 Interaction of Nitric Oxide with nsHb-1s -- 7.7 Concluding Remarks and Future Directions -- References -- 8 Nitric Oxide as a Mediator of Cold Stress Response: A Transcriptional Point of View -- Abstract -- 8.1 Introduction -- 8.2 NO Bioavailability During Plant Response to Low Temperature: More than a Way to Skin a Cat? -- 8.3 NO and Plant Tolerance to Low Temperature -- 8.3.1 Identification of Cold-Responsive NO-Dependent Genes: From Specific to Holistic. , 8.4 How NO Regulates Cold-Responsive Gene Expression? The Missing Links -- 8.5 Concluding Remarks -- References -- 9 Nitric Oxide and UV-B Radiation -- Abstract -- 9.1 Introduction -- 9.2 NO Reveals Protective Effects Under UV-B Influence in Dose-Dependent Manner -- 9.3 The Role of NO-dependent Regulatory Cascades in UV-B Perception by Plant Cell -- 9.4 Conclusions and Future Perspectives -- References -- 10 Nitric Oxide Impact on Plant Adaptation to Transition Metal Stress -- Abstract -- 10.1 Introduction -- 10.2 Transition Metals in Plants: An Exquisite Balance -- 10.3 Mechanism of Transition Metal Toxicity -- 10.4 Nitric Oxide in Transition Metal Stress -- 10.5 Transition Metal Stress Alters the Endogenous Level of Nitric Oxide -- 10.6 Exogenous Application of Nitric Oxide Alters the Transition Metal Tolerance Responses -- 10.7 Conclusions -- References -- 11 Nitric Oxide Action in the Improvement of Plant Tolerance to Nutritional Stress -- Abstract -- 11.1 Introduction -- 11.2 Modulation of K+Na+ Homeostasis by NO Under Salinity Stress -- 11.3 The Interplay of NO with Calcium Under Abiotic Stress Conditions -- 11.4 Role of NO in Plant Iron Homeostasis Under Nutritional Stress -- 11.5 The Interplay of NO with Mineral Nutrients Under Heavy Metal Stress -- 11.6 Conclusion -- References -- 12 Role of Nitric Oxide in Heavy Metal Stress -- Abstract -- 12.1 Introduction -- 12.2 NO Generation Under HMs Stress -- 12.3 Effects of NO in the Protection Against HMs Stress -- 12.4 Conclusions and Future Prospects -- References -- 13 Role of Nitric Oxide in Salt Stress-induced Programmed Cell Death and Defense Mechanisms -- Abstract -- 13.1 Introduction -- 13.2 NaCl Tolerance in Plants -- 13.3 NaCl Toxicity and Salt-induced Cell Death in Plants -- 13.4 NO Production in Plants Exposed to NaCl -- 13.5 NO in Signal Transduction -- 13.6 NO and Salt Tolerance. , 13.7 NO- and Salt-induced Programmed Cell Death -- 13.8 Conclusion and Perspectives -- References -- 14 Nitric Oxide and Postharvest Stress of Fruits, Vegetables and Ornamentals -- Abstract -- 14.1 Introduction -- 14.2 Relationship Between Endogenous Nitric Oxide and Ethylene -- 14.3 Postharvest Application of NO -- 14.3.1 Fumigation with NO Gas -- 14.3.2 Dipping in Aqueous Solution of NO-Donor Compounds -- 14.4 Effects of NO on Intact Produce -- 14.4.1 Effects of NO Gas -- 14.4.2 Effects of NO-Donor Compounds -- 14.5 Effects of NO on Fresh-Cut Produce -- 14.6 Effects of NO on Ornamentals -- 14.7 Mode of Action of NO on Postharvest Produce -- 14.8 Commercial Usage -- References -- 15 Insights into the Participation of Nitric Oxide and Extra Cellular ATP in Wounding -- Abstract -- 15.1 Introduction -- 15.2 Wounding-Mediated Downstream Events and NO -- 15.3 Extracellular ATP (eATP) and NO Are Co-players in Plant and Animal Systems -- 15.4 Participation of S-Nitrosylation in Wounding -- 15.5 Concluding Remarks -- References -- Index.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Online-Ressource
    Online-Ressource
    Cham :Springer International Publishing AG,
    Schlagwort(e): Plants-Effect of hydrogen sulfide on. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (241 pages)
    Ausgabe: 1st ed.
    ISBN: 9783030736781
    Serie: Plant in Challenging Environments Series ; v.1
    DDC: 581.7
    Sprache: Englisch
    Anmerkung: Intro -- Preface -- Contents -- Chapter 1: Hydrogen Sulfide on the Crossroad of Regulation, Protection, Interaction and Signaling in Plant Systems Under Different Environmental Conditions -- 1.1 Introduction -- 1.2 Biosynthesis and Role of H2S in Plant System -- 1.3 H2S and Regulation of Physiological Processes in Plants -- 1.4 H2S and Protection of Plants Under Stress -- 1.5 H2S Signaling and Interaction in Plants -- 1.6 Conclusion -- References -- Chapter 2: Hydrogen Sulfide: A Road Ahead for Abiotic Stress Tolerance in Plants -- 2.1 Introduction -- 2.2 Biosynthesis of H2S in Plants -- 2.3 Physiological Functions of H2S in Plants -- 2.4 Effect of H2S on Plants Under Salt Stress -- 2.5 Response of Plants to H2S Under Drought Stress -- 2.6 Effect of H2S Under Heavy Metal Stress -- 2.7 Effect of H2S Under Temperature Stress -- 2.7.1 Low Temperature Stress -- 2.7.2 High Temperature Stress -- 2.8 Conclusion -- References -- Chapter 3: Functional Interaction of Hydrogen Sulfide with Nitric Oxide, Calcium, and Reactive Oxygen Species Under Abiotic Stress in Plants -- 3.1 Introduction -- 3.2 Biosynthesis of H2S in Plants -- 3.3 Changes in Endogenous Level of H2S in Plants in Response to Stresses -- 3.3.1 Low Temperature Stress and H2S -- 3.3.2 High Temperature Stress and H2S -- 3.3.3 Dehydration Stress and H2S -- 3.3.4 Salt Stress and H2S -- 3.3.5 Heavy Metals (HMs) and H2S -- 3.4 Functional Interactions of H2S with Ca2+ Ions -- 3.5 Crosstalk of H2S with ROS -- 3.6 H2S and NO as Interdependent Signal Mediators -- 3.7 Functional Interaction of H2S with Other Signal Mediators During Adaptive Reactions in Plants -- 3.8 Conclusions -- References -- Chapter 4: Hydrogen Sulfide and Redox Homeostasis for Alleviation of Heavy Metal Stress -- 4.1 Introduction -- 4.2 Metabolism of H2S in Plants -- 4.3 Role of H2S in Alleviating Heavy Metal Stress. , 4.3.1 Abrogation of Al Toxicity in Plants by H2S Application -- 4.3.2 Abrogation of Cd Toxicity in Plants by H2S Application -- 4.3.3 Mitigation of As Toxicity in Plants by H2S Application -- 4.3.4 Mitigation of Cr Toxicity in Plants by H2S Application -- 4.3.5 Mitigation of Cu Toxicity in Plants by H2S Application -- 4.3.6 Mitigation of Other Heavy Metal Toxicity in Plants by H2S Application -- 4.4 Conclusion and Future Perspectives -- References -- Chapter 5: Effect of Hydrogen Sulfide on Osmotic Adjustment of Plants Under Different Abiotic Stresses -- 5.1 Introduction -- 5.2 Metabolism of H2S in Plants -- 5.3 Roles of H2S in Different Forms of Abiotic Stresses -- 5.3.1 Drought Stress -- 5.3.2 Salt Stress -- 5.3.3 Temperature Stress -- 5.3.4 Heavy Metal Stress -- 5.3.5 Other Forms of Stress -- 5.4 Conclusion and Future Perspectives -- References -- Chapter 6: Hydrogen Sulfide and Stomatal Movement -- 6.1 Introduction -- 6.2 Hydrogen Sulfide and Abscisic Acid in Plants Under Drought and Salinity -- 6.3 Hydrogen Sulfide and Light -- 6.3.1 Blue Light -- 6.3.2 Red Light -- 6.3.3 UV-B -- 6.4 Stomatal Conductance and CO2 -- 6.5 Stomatal Conductance and Plant Growth Under Ozone Exposure -- 6.6 Conclusion and Perspectives -- References -- Chapter 7: Hydrogen Sulfide and Fruit Ripening -- 7.1 Introduction -- 7.2 How H2S Is Endogenously Generated in Plant Cells? -- 7.3 Endogenous H2S Metabolism during Fruit Ripening and Potential Beneficial Effects of the Exogenous H2S Application During Postharvest -- 7.4 Conclusion and Future Perspectives -- References -- Chapter 8: Hydrogen Sulfide Impact on Seed Biology Under Abiotic Stress -- 8.1 Introduction -- 8.2 Hydrogen Sulfide Metabolism in Seeds -- 8.3 Hydrogen Sulfide and Germination Capacity -- 8.4 Molecular Mechanisms Controlled by H2S in Germinating Seeds. , 8.4.1 Interplay with ROS, Nitric Oxide, and Antioxidant Defense -- 8.4.2 H2S and Seed Metabolism -- 8.4.3 H2S and Hormone Signaling in the Regulation of Seed Germination -- 8.5 Concluding Remarks and Open Questions -- References -- Chapter 9: Hydrogen Sulfide Signaling in the Defense Response of Plants to Abiotic Stresses -- 9.1 Introduction -- 9.2 Stress by Metals -- 9.3 Salt Stress -- 9.4 Water Stress -- 9.5 Temperature Stress -- 9.6 Interplay Among H2S, Plant Hormones, and Secondary Messengers -- 9.7 Conclusions -- References -- Chapter 10: A Transcriptomic and Proteomic View of Hydrogen Sulfide Signaling in Plant Abiotic Stress -- 10.1 Introduction -- 10.2 Participation of H2S, Polysulfides, and Reactive Sulfur Species in Stress Signaling -- 10.3 The H2S Signaling Network Seen Through Transcriptomics and Proteomics -- 10.3.1 H2S and the Plant-Stress Proteome -- 10.3.2 H2S and the Plant-Stress Transcriptome -- 10.4 Conclusion -- References -- Chapter 11: Cysteine and Hydrogen Sulfide: A Complementary Association for Plant Acclimation to Abiotic Stress -- 11.1 Introduction -- 11.2 Homeostasis of Cys and H2S -- 11.2.1 Regulation of Cys Homeostasis -- 11.2.2 Regulation of H2S Homeostasis -- 11.3 Involvement of H2S and Cys in Plant Adaptive Responses to Abiotic Stresses -- 11.4 Mode of Action of H2S and Cys Under Abiotic Stresses -- 11.4.1 Mode of Action of H2S in Abiotic Stress Tolerance of Plants -- 11.4.1.1 Interaction of H2S with Other Signaling Molecules -- 11.4.1.2 H2S and Persulfidation -- 11.4.2 Mode of Action of Cys in Abiotic Stress Tolerance of Plants -- 11.4.2.1 Cys and Glutathione in the Cellular Redox Homeostasis -- 11.4.2.2 Cys and Phytochelatins -- 11.4.2.3 Cys and Metallothioneins -- 11.5 Conclusions -- References -- Chapter 12: Hydrogen Sulfide and Posttranslational Modification of Proteins: A Defense Strategy Against Abiotic Stress. , 12.1 Introduction -- 12.2 Protein Persulfidation and Detection Methods in Plants -- 12.3 Protein Persulfidation and H2S in Plants -- 12.4 Protein Persulfidation in Plant Adaptive Responses to Abiotic Stress -- 12.4.1 Antioxidant Defense System -- 12.4.2 Autophagy -- 12.4.3 Stomatal Closure -- 12.5 The Crosstalk of H2S with Other Signaling Molecules and Protein Persulfidation -- 12.5.1 Crosstalk of H2S and NO in Relation to Persulfidation -- 12.5.2 Crosstalk of H2S and ROS in Relation to Persulfidation -- 12.6 Conclusions and Future Perspectives -- References -- Index.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...