GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • East China and Japan Seas  (1)
Publikationsart
Schlagwörter
Verlag/Herausgeber
Erscheinungszeitraum
  • 1
    Publikationsdatum: 2022-10-26
    Beschreibung: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 124, (2019): 8439-8454, doi: 10.1029/2019JC015637.
    Beschreibung: An Iranian tanker with 136,000 tons of natural gas condensates collided with a freighter in the East China Sea in January 2018 and, after drifting ablaze for 8 days and over 200 km, capsized on the edge of the shelf near the Kuroshio Current. Different from the crude oil, the condensates consist of hydrocarbons that have relatively high solubility in seawater. We postulate that the leakage from the remaining condensate cargo at 110 m depth may result in a bottom layer of condensate‐enriched water in the vicinity of the resting tanker. A model is constructed in this study to simulate the dispersion of contaminated water through the processes of oceanic advection, diffusion, biodegradation, and volatilization. It is found that the scope and magnitude of the dispersion are most sensitive to the biodegradation. Even though the biodegradation time scale depends on several factors that are not well quantified in this region, using any value within the estimated range from a previous study results in significant contamination in the broad area. The dispersion is particularly effective in this incident because the tanker capsized near the Kuroshio Current—a fast‐moving western boundary current. The Kuroshio acts as a fast conduit to spread the contaminant to the east coast of Japan and the interior Pacific Ocean. In addition, we identify that the Tsushima Warm Current, a perennial flow into the Japan Sea, is the second major conduit for spreading the polluted water. This study indicates that dissolved hydrocarbons are the main environmental risk for maritime spills of natural gas condensates.
    Beschreibung: Chris Reddy at WHOI provided invaluable guidance at the beginning of this study. Jian Zhao at UMD participated in some early discussions and helped the model development. Lei Chen has been financially supported by China Scholarship Council to study at WHOI for 2 years as a WHOI guest student. Jiayan Yang's participation in this study has been supported by the Woods Hole Oceanographic Institution‐Ocean University of China (WHOI‐OUC) Collaborative Initiative and the W. Van Alan Clark Chair for Excellence in Oceanography from WHOI. This work is supported by National Natural Science Foundation of China major project (41490640, 41490643). The daily oceanic velocity field used in the model is Global Ocean Sea Physical Analysis and Forecasting Products distributed by CMEMS, which can be available online (http://marine.copernicus.eu/services‐portfolio/access‐to‐products/?option=com_csw&view=details&product_id=GLOBAL_ANALYSIS_FORECAST_PHY_001_024). The model output data are available freely from the database of ZENODO (https://zenodo.org/record/3405388#.XXk‐5yhKhPY).
    Beschreibung: 2020-05-11
    Schlagwort(e): Maritime spill ; Natural gas condensates ; Bio-degradation ; East China and Japan Seas ; Kuroshio Current ; Tsushima Warm Current
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...