GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Continental shelf/slope  (1)
  • East China and Japan Seas  (1)
Document type
Keywords
Years
  • 1
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 124, (2019): 8439-8454, doi: 10.1029/2019JC015637.
    Description: An Iranian tanker with 136,000 tons of natural gas condensates collided with a freighter in the East China Sea in January 2018 and, after drifting ablaze for 8 days and over 200 km, capsized on the edge of the shelf near the Kuroshio Current. Different from the crude oil, the condensates consist of hydrocarbons that have relatively high solubility in seawater. We postulate that the leakage from the remaining condensate cargo at 110 m depth may result in a bottom layer of condensate‐enriched water in the vicinity of the resting tanker. A model is constructed in this study to simulate the dispersion of contaminated water through the processes of oceanic advection, diffusion, biodegradation, and volatilization. It is found that the scope and magnitude of the dispersion are most sensitive to the biodegradation. Even though the biodegradation time scale depends on several factors that are not well quantified in this region, using any value within the estimated range from a previous study results in significant contamination in the broad area. The dispersion is particularly effective in this incident because the tanker capsized near the Kuroshio Current—a fast‐moving western boundary current. The Kuroshio acts as a fast conduit to spread the contaminant to the east coast of Japan and the interior Pacific Ocean. In addition, we identify that the Tsushima Warm Current, a perennial flow into the Japan Sea, is the second major conduit for spreading the polluted water. This study indicates that dissolved hydrocarbons are the main environmental risk for maritime spills of natural gas condensates.
    Description: Chris Reddy at WHOI provided invaluable guidance at the beginning of this study. Jian Zhao at UMD participated in some early discussions and helped the model development. Lei Chen has been financially supported by China Scholarship Council to study at WHOI for 2 years as a WHOI guest student. Jiayan Yang's participation in this study has been supported by the Woods Hole Oceanographic Institution‐Ocean University of China (WHOI‐OUC) Collaborative Initiative and the W. Van Alan Clark Chair for Excellence in Oceanography from WHOI. This work is supported by National Natural Science Foundation of China major project (41490640, 41490643). The daily oceanic velocity field used in the model is Global Ocean Sea Physical Analysis and Forecasting Products distributed by CMEMS, which can be available online (http://marine.copernicus.eu/services‐portfolio/access‐to‐products/?option=com_csw&view=details&product_id=GLOBAL_ANALYSIS_FORECAST_PHY_001_024). The model output data are available freely from the database of ZENODO (https://zenodo.org/record/3405388#.XXk‐5yhKhPY).
    Description: 2020-05-11
    Keywords: Maritime spill ; Natural gas condensates ; Bio-degradation ; East China and Japan Seas ; Kuroshio Current ; Tsushima Warm Current
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 32(8), (2019): 2185-2205. doi:10.1175/JCLI-D-18-0538.1.
    Description: Much attention has been paid to the climatic impacts of changes in the Kuroshio Extension, instead of the Kuroshio in the East China Sea (ECS). This study, however, reveals the prominent influences of the lateral shift of the Kuroshio at interannual time scale in late spring [April–June (AMJ)] on the sea surface temperature (SST) and precipitation in summer around the ECS, based on high-resolution satellite observations and ERA-Interim. A persistent offshore displacement of the Kuroshio during AMJ can result in cold SST anomalies in the northern ECS and the Japan/East Sea until late summer, which correspondingly causes anomalous cooling of the lower troposphere. Consequently, the anomalous cold SST in the northern ECS acts as a key driver to robustly enhance the precipitation from the Yangtze River delta to Kyushu in early summer (May–August) and over the central ECS in late summer (July–September). In view of the moisture budget analysis, two different physical processes modulated by the lateral shift of the Kuroshio are identified to account for the distinct responses of precipitation in early and late summer, respectively. First, the anomalous cold SST in the northern ECS induced by the Kuroshio offshore shift is likely conducive to the earlier arrival of the mei-yu–baiu front at 30°–32°N and its subsequent slower northward movement, which may prolong the local rainy season, leading to the increased rain belt in early summer. Second, the persistent cold SST anomalies in late summer strengthen the near-surface baroclinicity and the associated strong atmospheric fronts embedded in the extratropical cyclones over the central ECS, which in turn enhances the local rainfall.
    Description: We appreciate three anonymous reviewers for their thoughtful and constructive comments. This work is supported by the National Key Research and Development Program of China (2016YFA0601804), the National Natural Science Foundation of China (NSFC) Projects (91858102, 41490643, 41490640, 41506009, U1606402) and the OUC–WHOI joint research program (21366).
    Description: 2019-10-01
    Keywords: Continental shelf/slope ; Atmosphere-ocean interaction ; Boundary currents ; Precipitation ; Interannual variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...