GLORIA

GEOMAR Library Ocean Research Information Access

Language
Preferred search index
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Topics (search only within journals and journal articles that belong to one or more of the selected topics)
Feed Format
Maximum Number of Items per Feed
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Green chemistry. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (299 pages)
    Edition: 1st ed.
    ISBN: 9783030678845
    Series Statement: Advances in Science, Technology and Innovation Series
    DDC: 660.0286
    Language: English
    Note: Intro -- Contents -- 1 Biomass-Derived Polyurethanes for Sustainable Future -- Abstract -- 1 Introduction -- 1.1 Chemicals for Preparation of Polyurethanes -- 1.2 Importance of Green Chemicals and Synthesis Methods -- 1.3 Characteristics of Biomaterials for Polyurethanes -- 2 Bio-Oils as a Renewable Resource for Polyurethanes -- 2.1 Epoxidation and Ring-Opening Reactions -- 2.2 Hydroformation and Hydrogenation Reactions -- 2.3 Ozonolysis -- 2.4 Thiol-Ene Reaction -- 2.5 Transesterification Reaction -- 3 Terpenes as Green Starting Chemicals for Polyurethanes -- 4 Lignin for Green Polymers -- 5 Conclusion -- References -- 2 Mechanochemistry: A Power Tool for Green Synthesis -- Abstract -- 1 Introduction -- 2 History of Mechanochemistry -- 3 Principles of Mechanochemistry -- 3.1 Mechanisms and Kinetics of Mechanochemistry -- 3.2 Effects of Reaction Parameters -- 4 Mechanochemical Synthesis of Materials -- 4.1 Mechanochemical Synthesis of Co-crystals -- 4.2 Mechanochemistry in Inorganic Synthesis -- 4.3 Mechanochemistry in Organic Synthesis -- 4.4 Mechanochemistry in Metal-Organic Frameworks (MOFs) -- 4.5 Mechanochemistry in Porous Organic Materials (POMs) -- 4.6 Mechanochemical Synthesis of Polymers -- 5 Conclusions -- References -- 3 Future Trends in Green Synthesis -- Abstract -- 1 Introduction -- 2 Green Chemistry Metrics -- 2.1 Atom Economy (AE) -- 2.2 Environmental Factor (E Factor) -- 2.3 Process Mass Intensity (PMI) -- 2.4 Reaction Mass Efficiency (RME) -- 3 Application of Green Concept in Synthesis -- 3.1 Solvent-Based Organic Synthesis -- 3.2 Aqueous Medium -- 3.2.1 Micellar Media -- 3.2.2 Different Non-Aqueous Media -- Ionic Liquids -- Fluorous Media -- Supercritical Fluid -- Solvent-Free Synthesis -- 4 Future Trends -- References -- 4 Plant-Mediated Green Synthesis of Nanoparticles -- Abstract -- 1 Introduction. , 2 Methods for Metallic Nanoparticle Biosynthesis -- 3 Green Biosynthesis of Metallic NPs -- 3.1 Gold Nanoparticles -- 3.2 Platinum Nanoparticles -- 3.3 Silver Nanoparticles -- 3.4 Zinc Oxide Nanoparticles -- 3.5 Titanium Dioxide Nanoparticles -- 4 Different Parts Used for the Synthesis of Metallic Nanoparticles -- 4.1 Fruit -- 4.2 Stem -- 4.3 Seeds -- 4.4 Flowers -- 4.5 Leaves -- 5 Conclusions -- References -- 5 Green Synthesis of Hierarchically Structured Metal and Metal Oxide Nanomaterials -- Abstract -- 1 Introduction -- 2 Advantages of Green Synthesis Methods -- 3 Green Synthesis Methods for Hierarchically Structured Metal and Metal Oxide Nanomaterials -- 3.1 Biological Methods -- 3.1.1 Using Microorganism -- Microorganisms as Reactant -- Microorganism as Template -- 3.1.2 Using Plant -- Plant as Reactant -- Plant as Template -- 3.1.3 Using Other Green Templates -- 3.2 Physical and Chemical Methods -- 3.2.1 Green Techniques -- 3.2.2 Green Reagents -- 3.2.3 Green Solvents -- 4 Growth Mechanism of Metal and Metal Oxide HSNs -- 4.1 Biological Method -- 4.1.1 Biomolecules as Reagents -- 4.1.2 Biomolecules as Templates -- 4.2 Physical and Chemical Methods -- 5 Applications of Hierarchically Structured Metal and Metal Oxide Nanomaterials -- 5.1 Biomedical Application -- 5.2 Environmental Remediation -- 5.2.1 Wastewater Treatment -- 5.2.2 Energy Storage -- 5.2.3 Sensing -- 6 Present Challenges and Future Prospect -- Acknowledgements -- References -- 6 Bioprivileged Molecules -- Abstract -- 1 Introduction -- 2 Four Carbon 1,4-Diacids -- 2.1 Succinic Acid -- 2.2 Fumaric Acid -- 2.3 Malic Acid -- 3 Furan 2,5-Dicarboxylic Acid (FDCA) -- 4 3-Hydroxypropionic Acid (3-HPA) -- 5 Glucaric Acid -- 6 Glycerol -- 7 Aspartic Acid -- 8 Itaconic Acid -- 9 3-Hydroxybutyrolactone -- 10 Sorbitol -- 11 Xylitol -- 12 Glutamic Acid -- 13 Levulinic Acid. , 14 Emerging Molecules -- 15 Conclusion -- References -- 7 Membrane Reactors for Green Synthesis -- Abstract -- 1 Introduction -- 2 Chemical Reaction Enzymatic MR Using Supercritical CO2-IL -- 2.1 Ionic Liquid Media Effect on Free CLAB -- 2.2 Butyl Propionate Synthesis Using Active Membranes SC-CO2 and SC-CO2/IL -- 2.3 Butyl Propionate Synthesis Using Active Membranes in Hexane/IL -- 3 Mixed Ionic Electronic MR -- 3.1 Methane Flow Rate and Concentration Effects on Side II of Membrane -- 3.2 Steam Flow Effect on Side I of Membrane -- 3.3 Temperature Effect -- 4 Green Synthesis of Methanol in a Membrane Reactor -- 5 Green Fuel Energy -- 5.1 Green H2 Energy -- 5.2 Biofuel Energy -- 5.3 Green Fuel Additive -- 6 Biocatalyst Membrane Reactors -- 7 Photocatalytic Membrane Reactors -- 8 Conclusions -- References -- 8 Application of Membrane in Reaction Engineering for Green Synthesis -- Abstract -- 1 Introduction -- 2 Applications of Membrane Reactors in Reaction Engineering -- 2.1 Syngas Production -- 2.2 Hydrogen Production -- 2.3 CO2 Thermal Decomposition -- 2.4 Higher Hydrocarbon Production -- 2.5 Methane Production -- 2.6 Ammonia Production -- 3 Environmental Impacts -- 4 Conclusions and Future Recommendations -- Acknowledgements -- References -- 9 Photo-Enzymatic Green Synthesis: The Potential of Combining Photo-Catalysis and Enzymes -- Abstract -- 1 Introduction -- 2 Principle -- 3 Enzymes Involved in Light-Driven Catalysis -- 3.1 Heme-Containing Enzymes -- 3.1.1 Cytochrome P450 -- 3.1.2 Peroxidases -- 3.2 Flavin-Based Enzyme -- 3.2.1 Baeyer-Villiger Monooxygenases -- 3.2.2 Old Yellow Enzymes -- 3.3 Metal Cluster-Centered Enzyme -- 3.3.1 Hydrogenases -- 3.3.2 Carbon Monoxide Dehydrogenases -- 4 Nanoparticle-Based Activation of Enzyme -- 5 Applications in Photo-Biocatalysis -- 5.1 Isolated Enzymes/Cell Lysates -- 6 Summary and Future Scope -- References. , 10 Biomass-Derived Carbons and Their Energy Applications -- Abstract -- 1 Introduction -- 2 Types of Biomass Materials -- 2.1 Plant-Based Carbons -- 2.2 Fruit-Based Carbons -- 2.3 Animal-Based Carbons -- 2.4 Microorganism-Based Carbons -- 3 Activation of Biomass-Derived Carbons -- 3.1 Activation of Carbons -- 3.1.1 Chemical Activation of Carbons -- 3.1.2 Carbon Activation Through Physical Method -- 3.1.3 Self-activation of Carbons -- 3.2 Pyrolysis Techniques -- 3.2.1 Effect of Temperature -- 3.2.2 Effect of Residence Time -- 3.2.3 Heating Rate Effect -- 3.2.4 Size of the Particle -- 3.3 Microwave-Assisted Technique -- 3.4 Carbonization by Hydrothermal -- 3.5 Ionothermal Carbonization -- 3.6 Template Method -- 4 Energy Storage Applications of Biomass Carbons -- 4.1 Supercapacitors -- 4.2 Li/Na-Ion Batteries -- 5 Conclusion -- Acknowledgements -- References -- 11 Green Synthesis of Nanomaterials via Electrochemical Method -- Abstract -- 1 Introduction -- 2 Green Synthesis -- 2.1 Application of Biology in Green Synthesis -- 2.2 Green Synthesis Based on the Application of Solvent -- 3 Computational Data and Analysis -- 4 Electrochemical Method -- 5 Electrodeposition Method -- 5.1 Experimental Setup for Electrodeposition -- 6 Research Work: Using Green Electrochemical Methods for Nanomaterials Synthesis -- 7 Conclusion -- References -- 12 Microwave-Irradiated Synthesis of Imidazo[1,2-a]pyridine Class of Bio-heterocycles: Green Avenues and Sustainable Developments -- Abstract -- 1 Introduction -- 2 Microwave-Assisted Synthesis of 2-arylimidazo[1,2-a]pyridines [Abbreviated as 2-Aryl-IPs]. -- 2.1 Synthesis of Fused Bicyclic Heteroaryl Boronates and Imidazopyridine-Quinazoline Hybrids Under MW-irradiations -- 2.2 MW-Irradiated Synthesis of IPs Using Multi-Component Strategy Under Neat Conditions. , 2.3 One-Pot, Three-Component Synthesis of 2-Phenyl-H-Imidazo[1,2-α]pyridine Under MW-Irradiations -- 2.4 Microwave-Assisted Amine-Triggered Benzannulation Strategy for the Preparation of 2,8-Diaryl-6-Aminoimidazo-[1,2-a]pyridines -- 2.5 MW-Assisted NaHCO3-catalyzed Synthesis of Imidazo[1,2-a]pyridines in PEG400 Media and Its Practical Application in the Synthesis of 2,3-Diaryl-IP Class of Bio-Heterocycles -- 2.6 MW-Irradiated, Ligand-Free, Palladium-Catalyzed, One-Pot 3-component Reaction for an Efficient Preparation of 2,3-Diarylimidazo[1,2-a]pyridines -- 2.7 MW-Assisted Water-PEG400-mediated Synthesis of 2-Phenyl-IP via Multi-Component Reaction (MCR) -- 2.8 Microwave-Irradiated Synthesis of Imidazo[1,2-a]pyridines Under Neat, Catalyst-Free Conditions -- 2.9 Green Synthesis of Imidazo[1,2-a]pyridines in H2O -- 2.10 Microwave-Assisted Neat Synthesis of Substituted 2-Arylimidazo[1,2-a]Pyridines -- 2.11 Microwave-Assisted Nano SiO2 Neat Synthesis of Substituted 2-Arylimidazo[1,2-a]pyridines -- 2.12 Microwave-Assisted NaHCO3-Catalyzed Synthesis of 2-phenyl-IPs -- 3 Microwave-Assisted Synthesis of 3-amino-2-arylimidazo[1,2-a]pyridines [3-amino-2-aryl-IPs] -- 3.1 Microwave-Irradiated Synthesis of 3-aminoimidazo[1,2-a]pyridines via Fluorous Multi-component Pathway -- 3.2 MW-Irradiated Synthetic Protocol for 3-aminoimidazo[1,2-a]pyridines via MCR Pathway -- 3.3 MW-Assisted Sequential Ugi/Strecker Reactions Involving 3-Center-4-Component and 3-Center-5-Component MCR Strategy -- 3.4 One-Pot, 4-component Cyclization/Suzuki Coupling Leading to the Rapid Formation of 2,6-Disubstituted-3-Amino-IPs Under Microwave Irradiations -- 3.5 ZnCl2-catalyzed MCR of 3-aminoimidazo[1,2-a]pyridines Using MW Conditions -- 3.6 Microwave-Promoted Preparation of N-(3-arylmethyl-2-oxo-2,3-dihydroimidazo[1,2-a]pyridin-3-Yl)Benzamides. , 3.7 MW-Assisted Multi-component Neat Synthesis of Benzimidazolyl-Imidazo[1,2-a]pyridines.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Singapore :Springer Singapore Pte. Limited,
    Keywords: Botanical chemistry. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (318 pages)
    Edition: 1st ed.
    ISBN: 9789811566073
    Series Statement: Environmental and Microbial Biotechnology Series
    DDC: 579
    Language: English
    Note: Intro -- Preface -- Contents -- 1: Application of Microbial Biosurfactants in the Food Industry -- 1.1 Surfactants in the Food Industry -- 1.1.1 Food Additives -- 1.1.2 Biosurfactants as Food Preservatives -- 1.1.2.1 Emulsifying Agents -- 1.1.2.2 Antibiofilm Agents -- 1.1.2.3 Antimicrobial Agents -- 1.1.2.4 Antioxidant Agents -- 1.1.3 Industrial Prospects -- References -- 2: Microbial Biosurfactants for Contamination of Food Processing -- 2.1 Introduction -- 2.1.1 Food Contamination -- 2.1.2 Contamination in Food Processing -- 2.2 Microbial Biosurfactants Use in Food Processing -- 2.2.1 Glycolipids -- 2.2.2 Lipopeptides -- 2.3 Application of Microbial Surfactants in Food Processing -- 2.3.1 Biofilm Control -- 2.3.2 Food Preservatives -- 2.4 Concluding Remarks -- References -- 3: Antioxidant Biosurfactants -- 3.1 Introduction -- 3.2 Sources of Biosurfactants -- 3.2.1 Plant-Based Biosurfactants -- 3.2.1.1 Saponins -- Structure, Properties, and Types of Saponins -- Saponins as a Biosurfactants -- 3.2.2 Microbe-Based Biosurfactants -- 3.2.2.1 Types of Microbial Surfactants -- Glycolipids -- Rhamnolipids -- Sophorolipids -- Trehalolipids -- Succinoyl Trehalolipids -- Cellobiose Lipids -- Mannosylerythritol Lipids -- Xylolipids -- Mannose Lipids -- Lipopeptides or Lipoprotein -- Bacillus-Related Lipopeptides -- Surfactin -- Fengycin -- Iturin -- Kurstakins -- Lichenysins -- Pseudomonas-Related Lipopeptides -- Actinomycetes-Related lipopeptides -- Fungal-Related Lipopeptides -- Phospholipids, Fatty Acids (Mycolic Acids), and Neutral Lipids -- Polymeric Surfactants -- Particulate Surfactants -- 3.3 Factors Affecting Biosurfactant Production -- 3.3.1 pH and Temperature -- 3.3.2 Aeration and Agitation -- 3.3.3 Effect of Salt Salinity -- 3.3.4 Optimization of Cultivation Medium -- 3.3.4.1 Effect of Carbon Source -- 3.3.4.2 Effect of Nitrogen Source. , 3.3.4.3 Effect of Carbon to Nitrogen (C/N) Ratio -- 3.4 Screening of Microorganisms for Biosurfactant Production -- 3.4.1 Oil Spreading Assay -- 3.4.2 Drop Collapse Assay -- 3.4.3 Blood Agar Method/Hemolysis Assay -- 3.4.4 Hydrocarbon Overlay Agar -- 3.4.5 Bacterial Adhesion to Hydrocarbon (BATH) Assay -- 3.4.6 CTAB Agar Plate Method/Blue Agar Assay -- 3.4.7 Phenol: Sulfuric Acid Method -- 3.4.8 Microplate Assay -- 3.4.9 Penetration Assay -- 3.4.10 Surface/Interface Activity -- 3.4.11 Emulsification Activity -- 3.5 Antioxidant Properties of Biosurfactant -- 3.6 Conclusion -- References -- 4: Classification and Production of Microbial Surfactants -- 4.1 Introduction -- 4.1.1 Global Biosurfactant Market -- 4.2 Types of Biosurfactants -- 4.2.1 Glycolipids -- 4.2.1.1 Rhamnolipids -- 4.2.1.2 Sophorolipids -- 4.2.1.3 Trehalolipids -- 4.2.2 Lipoproteins and Lipopeptides -- 4.2.3 Fatty Acids -- 4.2.4 Phospholipids -- 4.2.5 Polymeric Biosurfactants -- 4.3 Factors Influencing Biosurfactant Productivity -- 4.3.1 Nutritional Factors -- 4.3.1.1 Carbon Source -- 4.3.1.2 Low-Cost and Waste Substrates -- 4.3.1.3 Nitrogen Source -- 4.3.1.4 Minerals -- 4.3.2 Environmental Factors -- 4.3.3 Cultivation Strategy -- 4.3.3.1 Solid-State Fermentation (SSF) -- 4.3.3.2 Submerged Fermentations (SmF) -- References -- 5: Microbial Biosurfactants and Their Potential Applications: An Overview -- 5.1 Introduction -- 5.2 Classes of Biosurfactants -- 5.2.1 Glycolipids -- 5.2.2 Lipopolysaccharides -- 5.2.3 Lipopeptides and Lipoproteins -- 5.2.4 Phospholipids -- 5.2.5 Fatty Acids -- 5.3 Microbial Production of Biosurfactants -- 5.4 Genes Involved in the Production of Microbial Biosurfactants -- 5.5 Applications -- 5.5.1 In Petroleum Industry -- 5.5.1.1 Mechanism of MEOR -- 5.5.2 Biosurfactant-Mediated Bioremediation -- 5.5.3 In Food Industry -- 5.5.4 In Agriculture. , 5.5.5 In Cosmetics -- 5.5.6 Biosurfactant in Nanotechnology -- 5.5.7 Biosurfactants as Drug Delivery Agents -- 5.5.8 Antimicrobial Activity of Biosurfactants -- 5.5.9 Biosurfactant as Anti-Adhesive Agent -- 5.5.10 In Fabric Washing -- 5.6 Conclusions -- References -- 6: Biodegradation of Hydrophobic Polycyclic Aromatic Hydrocarbons -- 6.1 Introduction -- 6.2 Health Related to PAHs -- 6.2.1 Consequences of Consistent of PAH Exposure by Human -- 6.2.2 Problems Associated with PAHs Via Cytochrome P450 -- 6.3 Biodegradation of PAHs -- 6.3.1 Challenges of Limited Aqueous Solubility in Water -- 6.3.2 Biodegradation Pathway of PAHs -- 6.3.2.1 Naphthalene -- 6.3.2.2 Pyrene -- 6.3.2.3 Fluoranthene -- 6.4 Biosurfactants -- 6.4.1 Biosurfactants -- 6.4.1.1 Glycolipid -- Rhamnolipids -- Cellobiose Lipids -- Sophorolipids -- Trehalolipids -- Mannosylerythritol Lipid -- 6.4.1.2 Lipopeptides -- 6.4.1.3 Phospholipids -- 6.4.2 Polymeric Biosurfactants -- 6.5 Enhanced Biodegradation of PAHs by Biosurfactant -- 6.5.1 Biodegradation in Micelles -- 6.5.2 Biosurfactant Acting as Bioemulsifier -- 6.6 Conclusions -- References -- 7: Surfactin: A Biosurfactant Against Breast Cancer -- 7.1 Introduction -- 7.2 Biosurfactants and Its Types -- 7.2.1 Glycolipids -- 7.2.1.1 Rhamnolipids -- 7.2.1.2 Sophorolipids -- 7.2.1.3 Trehalolipids -- 7.2.2 Lipopeptides -- 7.2.3 Fatty Acids -- 7.2.4 Phospholipids -- 7.2.5 Polymeric Biosurfactant -- 7.3 Surfactin: Structure, Membrane Interaction, Biosynthesis, and Regulation -- 7.3.1 Structure -- 7.3.2 Membrane Interaction -- 7.3.3 Biosynthesis -- 7.3.4 Regulation -- 7.4 Surfactin and Breast Cancer -- 7.5 Conclusion -- References -- 8: Anti-Cancer Biosurfactants -- 8.1 Introduction -- 8.2 Biosurfactants Classification and Structure -- 8.2.1 Mannosylerythritol Lipids (MELs) -- 8.2.2 Succinoyl Trehalose Lipids (STLs) -- 8.2.3 Sophorolipids. , 8.2.4 Rhamnolipids (RLs) -- 8.2.5 Myrmekiosides -- 8.2.6 Cyclic Lipopeptides (CLPs) -- 8.2.6.1 Amphisin, Tolaasin, and Syringomycin CLPs -- 8.2.6.2 Iturin and fengycin CLPs -- 8.2.6.3 Surfactin CLP -- 8.2.7 Rakicidns and Apratoxins -- 8.2.8 Serrawettins -- 8.2.9 Monoolein -- 8.2.10 Fellutamides -- 8.3 Biosurfactants Production -- 8.3.1 Factors Involved in Biosurfactants Production -- 8.3.1.1 Source of Carbon -- 8.3.1.2 Source of Nitrogen -- 8.3.1.3 Effect of Ions -- 8.3.1.4 Physical Factors -- 8.4 Anti-Cancer Activity of Biosurfactants -- 8.4.1 Breast Cancer -- 8.4.2 Lung Cancer -- 8.4.3 Leukemia -- 8.4.4 Melanoma -- 8.4.5 Colon Cancer -- 8.5 Biosurfactants as Drug Delivery System (DDS) -- 8.5.1 Liposomes -- 8.5.2 Niosomes -- 8.5.3 Nanoparticles -- 8.6 Conclusions and Future Challenges -- References -- 9: Biosurfactants for Oil Pollution Remediation -- 9.1 Introduction -- 9.2 Oil Pollution and Its Remediation -- 9.2.1 Oil Pollution -- 9.2.2 Oil Remediation in Polluted Environments -- 9.3 Biosurfactants -- 9.3.1 Synthesis of Biosurfactants -- 9.3.2 Biosurfactant Role in Oil Degradation -- 9.4 Application of Biosurfactants Used for Oil Remediation -- 9.4.1 Oil-Polluted Soil Bioremediation -- 9.4.2 Bioremediation of Marine Oil Spills and Petroleum Contamination -- 9.4.3 Cleaning of Oil Tanks and Pipelines -- 9.4.4 Bioremediation of Heavy Metals and Toxic Pollutants -- 9.5 Conclusion -- References -- 10: Potential Applications of Anti-Adhesive Biosurfactants -- 10.1 Introduction -- 10.2 Biosurfactants That Display Anti-Adhesive Activity -- 10.3 Biofilms and the Adhesion Process: Mechanisms and Effects -- 10.4 Applications of Biosurfactants as Anti-Adhesive Agents -- 10.4.1 Anti-Adhesive Applications in the Biomedical Field -- 10.4.2 Anti-Adhesive Applications in the Food Industry Surfaces -- 10.5 Future Trends and Conclusions -- References. , 11: Applications of Biosurfactant for Microbial Bioenergy/Value-Added Bio-Metabolite Recovery from Waste Activated Sludge -- 11.1 Introduction -- 11.2 Applications of Surfactants for Value-Added Bio-Metabolites Recovery from WAS -- 11.3 Applications of Surfactants for Energy Recovery from WAS -- 11.4 Applications of Surfactants for Refractory Organic Decontamination from WAS -- 11.4.1 PAHs Decontamination -- 11.4.2 Dye Decontamination -- 11.4.3 PCB Decontamination -- 11.5 Applications of Surfactants for WAS Dewatering -- 11.6 Applications of Surfactants for Heavy Metal Removal from WAS -- 11.7 State-of-the-Art Processes to Promote Organics Biotransformation from WAS -- 11.7.1 Co-Pretreatment -- 11.7.2 Interfacing AD with Bioelectrochemical Systems -- 11.7.3 Optimizing Process Conditions -- 11.8 Conclusion -- References -- 12: Application of Microbial Biosurfactants in the Pharmaceutical Industry -- 12.1 Introduction -- 12.2 Mechanism of Interaction of Biosurfactants -- 12.3 Physiochemical Properties -- 12.3.1 Surface Tension -- 12.3.2 Biosurfactant and Self-Assembly -- 12.3.3 Emulsification Activity -- 12.4 Application of Biosurfactants in Pharmaceutical Industry -- 12.4.1 Biosurfactant as an Antitumor/AntiCancer Agent -- 12.4.2 Biosurfactants as Drug Delivery Agents -- 12.4.3 Wound Healing and Dermatological Applications -- 12.4.4 Potential Antimicrobial Application -- 12.4.5 Other Applications in the Pharmaceutical Field -- 12.5 Applications of Surfactin in Pharmaceutical Industry -- 12.6 Concluding Remarks -- References -- 13: Antibacterial Biosurfactants -- 13.1 Introduction -- 13.2 Glycolipids -- 13.2.1 Rhamnolipids -- 13.2.2 Sophorolipids -- 13.2.3 Trehalose Lipids -- 13.3 Lipopeptides -- 13.4 Phospholipids -- 13.5 Antibacterial Activity -- 13.6 Polymeric Surfactants -- 13.7 Fatty Acids -- 13.7.1 Bio-Sources of Fatty Acids. , 13.7.2 Role of Fatty Acids as Antimicrobials.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Renewable energy sources. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (354 pages)
    Edition: 1st ed.
    ISBN: 9783030728779
    Series Statement: Advances in Science, Technology and Innovation Series
    DDC: 628.532
    Language: English
    Note: Intro -- Contents -- 1 Chemical Valorization of CO2 -- Abstract -- 1 Introduction -- 2 CO2-Derived Fuels and Chemicals -- 2.1 Methane -- 2.2 Methanol -- 2.3 Dimethyl Ether -- 2.4 Formic Acid -- 2.5 Ethanol -- 2.6 CO2-Fischer-Tropsch Liquid Fuels -- 2.7 Carbon Monoxide-Syngas -- 3 CO2 Chemically Derived Materials -- 3.1 Polymers -- 3.2 CO2-Derived Building Materials -- 4 Conclusions -- References -- 2 Progress in Catalysts for CO2 Reforming -- Abstract -- 1 Introduction -- 2 Technologies for Capturing and Storing Carbon Dioxide -- 3 Technologies for Using Carbon Dioxide -- 4 Methane Dry Reforming Process -- 4.1 Progress in Catalysts for Methane Dry Reforming (1928-1989) -- 4.2 Progress in Catalysts for Methane Dry Reforming (1990-1999) -- 4.3 Progress in Catalysts for Methane Dry Reforming (2000-2009) -- 4.4 Progress in Catalysts for Methane Dry Reforming (2010-2019) -- 4.5 Current Status in the Catalysts for Methane Dry Reforming -- 5 Dry Reforming of Other Compounds -- 6 Use of Steam or Oxygen in Dry Reforming of Methane and Other Compounds -- 7 Solid Oxide Fuel Cells Fueled with Biogas -- 8 Commercialization of Dry Reforming Process -- 9 Conclusions -- References -- 3 Fuel Generation from CO2 -- Abstract -- 1 Introduction -- 2 Approaches for Directly Converting CO2 to Fuels -- 2.1 Pure CO2 Decomposition Technology -- 2.2 Reagent-Based CO2 Conversion Technology -- 2.2.1 Dry Deformation of Methane Technology -- 2.2.2 Catalytic Hydrogenation of CO2 -- 3 Biological CO2 Fixation for Fuels -- 3.1 Thermochemical Conversion -- 3.1.1 Torrefaction -- 3.1.2 Pyrolysis -- 3.1.3 Thermochemical Liquefaction -- 3.1.4 Gasification -- 3.1.5 Direct Combustion -- 3.2 Biochemical Conversion -- 3.2.1 Biodiesel -- 3.2.2 Bioethanol -- 3.2.3 Biomethane -- 3.2.4 Biohydrogen -- 3.2.5 Bioelectricity -- 3.2.6 Volatile Organic Compounds. , 4 Conclusion and Future Perspectives -- References -- 4 Thermodynamics of CO2 Conversion -- Abstract -- 1 Introduction -- 2 Carbon Dioxide Capture -- 3 Carbon Dioxide Utilisations -- 4 Thermodynamic Considerations -- 5 Thermodynamics of CO2 -- 5.1 The Thermodynamic Attainable Region (AR) -- 5.2 Using Hess's Law to Transform the Extents to G-H AR @ 25˚C -- 5.3 Increasing Temperature on G-H AR -- 6 Conclusion -- Acknowledgements -- References -- 5 Enzymatic CO2 Conversion -- Abstract -- 1 Introduction -- 1.1 CO2 as a Greenhouse Gas -- 1.2 Carbon Capture, Storage, and Utilization -- 1.3 CO2 as a Chemical Feedstock -- 1.4 CO2 Conversion with Enzymes -- 2 Natural Conversion of CO2 in Cells -- 3 Enzymatic Conversion of CO2 in Cells -- 3.1 Conversion of CO2 by a Single Enzyme (in vitro) -- 3.1.1 Formate Dehydrogenase -- 3.1.2 Carbonic Anhydrase -- 3.1.3 Carbon Monoxide Dehydrogenase -- 3.1.4 Ribulose-1,5-bisphosphate Carboxylase/Oxygenase (RuBisCO) -- 3.2 Conversion of CO2 by a Multi-Enzyme Cascade in vitro -- 3.3 Other Ways (Photocatalytic CO2 Methanation) -- 4 Industrial Applications -- 4.1 Alcohols -- 4.2 Organic Acids -- 4.3 Terpenoids -- 4.4 Fatty Acids -- 4.5 Polyhydroxyalkanoates -- 4.6 Calcium Carbonate -- 5 Summary and Future Prospects -- References -- 6 Electrochemical CO2 Conversion -- Abstract -- 1 Introduction -- 2 Electrochemical CO2 Conversion -- 2.1 Fundamentals of the Process -- 2.2 Variants of Electrochemical Conversion of CO2 -- 2.2.1 Aqueous Electrolytes -- 2.2.2 Non-Aqueous Electrolytes -- 2.2.3 Solid Oxide Electrolytes -- 2.2.4 Molten Salt Electrolytes -- 3 Electrochemical CO2 Conversion from Molten Salts -- 3.1 Present State of Electrochemical Reduction of CO2in Molten Salts for the Production of Solid-Phase Carbonaceous Nanomaterials -- 3.2 Direct Electrochemical Reduction of CO2 in Chloride Melts. , 3.3 Indirect Electrochemical Reduction of CO2 in Molten Salts -- 3.4 The Mechanisms of Electrode Reactions Occurring at the Cathode and Anode -- 3.5 Prospects for CO2 Conversion in Molten Salts -- 4 Conclusions -- References -- 7 Supercritical Carbon Dioxide Mediated Organic Transformations -- Abstract -- 1 Introduction -- 2 Applications of Supercritical Carbon Dioxide -- 2.1 Hydrogenation Reactions -- 2.2 Asymmetric Hydrogenation Reactions -- 2.3 Diels-Alder Reaction -- 2.4 Coupling Reaction -- 2.5 Oxidation Reaction -- 2.6 Baeyer-Villiger Oxidation Reaction -- 2.7 Iodination Reaction -- 2.8 Polymerization Reaction -- 2.9 Carbonylation Reaction -- 2.9.1 Acetalization Reaction -- 2.9.2 Olefin Metathesis Reaction -- 2.9.3 Synthesis of heterocycles -- Synthesis of α-alkylidene Cyclic Carbonates -- Synthesis of 4-Methyleneoxazolidin-2-Ones -- Synthesis of 5-Alkylidene-1, 3-Oxazolidin-2-Ones -- Synthesis of 6-Phenyl-3a, 4-Dihydro-1H-Cyclopenta[C]furan-5(3H)-One -- Synthesis of 3, 4, 5, 6-Tetraethyl-2H-Pyran-2-One -- 3 Conclusions -- Acknowledgements -- References -- 8 Theoretical Approaches to CO2 Transformations -- Abstract -- 1 Carbon Dioxide Properties -- 2 CO2 Transformation as an Undeniable Necessity -- 3 CO2 Activation -- 3.1 Methodologies of CO2 Activation -- 4 Theoretical Insight of CO2 Transformation -- 4.1 The Theoretical Approach in CO2 Conversion to Value-Added Chemicals -- 4.1.1 Carbon Monoxide -- 4.1.2 Methane -- 4.1.3 Methanol -- 4.1.4 Formic Acid -- 4.1.5 Heterocycles -- Cyclic Carbonates -- Cyclic Carbamate -- Quiznazoline-2,4(1H,3H)-Dione -- 4.1.6 Summary and Outlook -- 5 Theoretical Designing of Novel Catalysts Based on DFT Studies -- 5.1 Theoretical Designing: Problems and Opportunities -- 6 Conclusion -- References -- 9 Carbon Dioxide Conversion Methods -- Abstract -- 1 Introduction -- 2 Molecular Structure of CO2. , 3 Thermo-Kinetics of CO2 Conversion -- 4 CO2 Conversion Methods and Products -- 4.1 Fischer-Tropsch Gas-to-Liquid (GTL) -- 4.2 Mineralization -- 4.3 Chemical Looping Dry Reforming -- 4.4 Enzymatic Conversion -- 4.5 Photocatalytic and Photo-Electrochemical Conversion -- 4.6 Thermo-Chemical Conversion -- 4.7 Hydrogenation -- 4.8 Reforming -- 5 Economic Assessment of CO2Alteration to Valuable Products -- 5.1 Syngas -- 5.2 Methanol -- 5.3 Formic Acid -- 5.4 Urea -- 5.5 Dimethyl Carbonate (DMC) -- 6 Conclusions and Future Perspective -- Acknowledgements -- References -- 10 Closing the Carbon Cycle -- Abstract -- 1 Introduction -- 2 Methods to Capture CO2 -- 3 CO2 Capture Technologies -- 4 CO2 Capture from the Air -- 5 Biomass and Waste-Based Chemicals -- 6 Advantages of Biomass-Based Chemicals -- 7 Replacement of Carbon-Based Energy Resources -- 8 Biomass Energy -- 9 Wind Energy -- 10 Solar Energy -- 11 Ocean Energy -- 12 Geothermal Energy -- 13 Hydrothermal Energy -- 14 Conclusions -- References -- 11 Carbon Dioxide Utilization to Energy and Fuel: Hydrothermal CO2 Conversion -- Abstract -- 1 Introduction -- 2 Hydrothermal CO2 Conversion -- 2.1 Metals and Catalysts as Reductant -- 2.2 Organic Wastes as Reductant -- 2.3 Inorganic Wastes as Reductant -- 2.4 Biomass as Reductant -- 3 Conclusion -- References -- 12 Ethylenediamine-Carbonic Anhydrase Complex for CO2 Sequestration -- 1 Introduction -- 2 An Overview of Carbonic Anhydrase (CA) -- 3 Mechanism of Action for Biocarbonate Formation -- 4 Historical Background of Carbonic Anhydrase -- 5 Sources of Carbonic Anhydrase -- 6 Carbonic Anhydrase in Microorganism -- 6.1 Micrococcus Lylae, Micrococcus Luteus, and Pseudomonas Fragi -- 6.2 Bacillus Subtilis and Citrobacter Freundii -- 6.3 Neisseria Gonorrhoeae -- 6.4 Helicobacter Pylori -- 7 Plant Carbonic Anhydrase -- 8 Overview of CO2. , 9 Sources of Carbon Dioxide (CO2) -- 10 Effect of Carbon Dioxide (CO2) -- 11 Carbon Dioxide Capturing -- 12 Carbon Dioxide (CO2) Sequestration -- 13 Carbon Dioxide (CO2) Sequestration by Carbonic Anhydrase -- 14 Separation System for CO2 Sequestration -- 15 Cryogenic Separation -- 16 Membrane Separation -- 17 Absorption -- 18 Adsorption -- 19 Bioreactors for CO2 Sequestration -- 20 Carbonic Anhydrase Immobilization -- 21 Ethylenediamine for Carbon Dioxide (CO2) Capturing -- 22 CO2 Capturing and Sequestration with Ethylenediamine-Carbonic Anhydrase Complex -- 23 CO2 Capturing and Sequestration Design and Optimization: Challenges and Future Prospects -- 24 Conclusion -- References -- 13 Green Pathway of CO2 Capture -- Abstract -- 1 Introduction -- 2 Molecular Structure of Carbon Dioxide -- 3 CO2 Capture System -- 3.1 Post-Combustion System -- 3.2 Pre-Combustion System -- 3.3 Oxy-Fuel Combustion System -- 4 Absorption Technology -- 4.1 Green Absorption with Ionic Liquids -- 4.1.1 Properties and Uses of Ionic Liquids -- 4.1.2 CO2 Solubility in PILs -- 4.1.3 CO2 Absorption in PILs with Carboxylate Anion -- 4.2 Reaction Mechanism Involved in CO2-Absorption -- 5 Adsorption Technology -- 5.1 Organic Adsorbents -- 5.1.1 Activated Charcoal -- 5.1.2 Biochar -- 5.1.3 Metal-Organic Frameworks (MOFs) -- 5.2 Other CO2 Adsorbents -- 5.2.1 Metal Oxide-Based Absorbents -- 5.2.2 Zeolites -- 5.3 Biological Processes of CO2Sequestration -- 5.3.1 Carbon Utilization by Forest and Agricultural Management -- 5.3.2 Ocean Fertilization -- 5.3.3 CO2 Capture by Microalgae -- 5.4 Electrochemical Ways for CO2 Capture -- 6 Conclusion -- References -- 14 Carbon Derivatives from CO2 -- Abstract -- 1 Introduction -- 2 Artificial Photoreduction -- 3 Electrochemical Reduction -- 4 Hydrogenation -- 5 Synthesis of Organic Carbonates -- 6 Reforming. , 7 Photocatalytic Reduction of CO2 with Water.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Ion exchange. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (230 pages)
    Edition: 1st ed.
    ISBN: 9783030104306
    DDC: 541.3723
    Language: English
    Note: Intro -- Preface -- Contents -- 1 Green Approach: Microbes for Removal of Dyes and Metals via Ion Binding -- Abstract -- 1.1 Introduction -- 1.2 Pollutants in the Environment -- 1.2.1 Toxic Metals -- 1.2.2 Triphenylmethane Dyes -- 1.3 Bioremediation Approaches in Removing Pollutants -- 1.3.1 Non-microbial Strategies -- 1.3.2 Microbial-Based Strategies -- 1.4 Mechanisms for Removal of Pollutant Ions -- 1.4.1 Mechanisms for Removal of Metal Ions -- 1.4.2 Mechanisms for Removal of Dyes -- 1.5 Innovations in the Removal of Pollutant Ions -- 1.6 Conclusions and Future Prospects -- Acknowledgements -- References -- 2 Removal of Heavy Metal from Wastewater Using Ion Exchange Membranes -- Abstract -- 2.1 Introduction -- 2.2 Heavy Metal -- 2.2.1 Chromium -- 2.2.2 Nickel -- 2.2.3 Copper -- 2.2.4 Zinc -- 2.2.5 Cadmium -- 2.2.6 Mercury -- 2.2.7 Lead -- 2.3 Physical Treatment Methods -- 2.3.1 Ultrafiltration -- 2.3.2 Nanofiltration -- 2.3.3 Reverse Osmosis -- 2.3.4 Forward Osmosis -- 2.3.5 Adsorption -- 2.4 Chemical Treatment Methods -- 2.4.1 Electrodialysis Method -- 2.4.2 Fuel Cell Method -- 2.5 Remaining Challenges and Perspectives -- 2.6 Conclusion -- Acknowledgements -- References -- 3 Separation and Purification of Uncharged Molecules -- Abstract -- 3.1 Introduction -- 3.2 Separation and Purification of Vitamin B12 -- 3.2.1 Downstream Processing of Vitamin B12 for Measurement -- 3.3 Separation and Purification of Haemoglobin -- 3.4 Separation and Purification of Uncharged Dyes -- 3.4.1 Purification and Separation of Dyes -- 3.5 Conclusion -- References -- 4 Aluminosilicate Inorganic Polymers (Geopolymers): Emerging Ion Exchangers for Removal of Metal Ions -- Abstract -- 4.1 Introduction -- 4.2 Methodology and Calculations -- 4.2.1 Terminology: Ion Exchange or Adsorption -- 4.2.2 Evidence for Ion Exchange. , 4.2.3 Modeling of Adsorption of Metal Ions on Geopolymers -- 4.2.4 Geopolymer Preparation -- 4.2.5 Washing of the Geopolymeric Adsorbent -- 4.2.6 Comparison Between Geopolymers and Zeolites -- 4.2.7 Geopolymers as Ion Exchangers -- 4.2.7.1 Geopolymers as Ion Exchangers for Alkali Metal Ions -- 4.2.7.2 Geopolymers as Ion Exchangers for Ammonium Ion -- 4.2.7.3 Geopolymers as Ion Exchangers for Alkaline Earth Metals -- 4.2.7.4 Geopolymers as Ion Exchangers for Heavy Metals -- Metakaolin-Based Geopolymers -- Fly Ash-Based Geopolymers -- Zeolite-Based Geopolymers -- 4.2.7.5 Geopolymers as Ion Exchangers/Adsorbents for Cationic Organic Dyes -- 4.2.8 Comparison of Geopolymers with Zeolites -- 4.2.8.1 Synthesis Conditions -- 4.2.8.2 Crystallinity -- 4.2.8.3 Surface Area and Porosity -- 4.2.8.4 Cation Exchange Capacity -- 4.2.8.5 Selectivity for Metal Ions -- 4.2.8.6 Stability in Acidic Solutions -- 4.2.8.7 Thermal Stability -- 4.2.8.8 Mechanical Strength -- 4.2.8.9 Regeneration -- 4.2.9 Stabilization/Solidification/Encapsulation of Ion Exchangers in Geopolymers -- 4.3 Concluding Remarks -- References -- 5 Microwave-Assisted Hydrothermal Synthesis of Agglomerated Spherical Zirconium Phosphate for Removal of Cs+ and Sr2+ Ions from Aqueous System -- Abstract -- 5.1 Introduction -- 5.2 Materials and Methods -- 5.2.1 Preparation of Agglomerated Spherical Zirconium Phosphate -- 5.2.2 Characterization -- 5.2.3 Ion Exchange Properties -- 5.2.4 Elution Behaviour -- 5.2.5 Distribution Studies -- 5.3 Results and Discussion -- 5.3.1 Fourier-Transform Infrared (FT-IR) Characterization -- 5.3.2 Powder X-ray Diffraction Studies -- 5.3.3 Scanning Electron Microscopy (SEM) and Energy Dispersive (EDS) Characterization -- 5.3.4 Zeta and Surface Area Analysis -- 5.3.5 Ion Exchange Characteristics -- 5.3.6 Mechanism of Sr2+ Interaction with Zirconium Phosphate -- 5.4 Conclusion. , Acknowledgements -- References -- 6 Metal Hexacyanoferrates: Ion Insertion (or Exchange) Capabilities -- Abstract -- 6.1 Introduction -- 6.2 Ion Exchange -- 6.2.1 Ion Exchange in MHCF at Work: Potentiometric Ion Sensors -- 6.2.2 An Ion Exchange-Based Approach for the Recovery of Metal Ions: The Case of Cesium and Thallium -- 6.2.3 Electrochemically Driven Ion Exchange -- 6.2.4 Reversible Ion Insertion in Battery Systems -- 6.3 Conclusion -- References -- 7 Biosorbents and Composite Cation Exchanger for the Treatment of Heavy Metals -- Abstract -- 7.1 Introduction -- 7.2 Agro-Based Biosorbents for Heavy Metal Removal -- 7.3 Biopolymers -- 7.3.1 Functional Groups -- 7.3.2 Cellulose -- 7.3.3 Chitosan -- 7.3.4 Nanofiber Membranes and Packed-Bed Adsorbers -- 7.4 Composite Ion Exchangers -- 7.5 Conclusion and Future Outlook -- References -- 8 Rare Earth Elements-Separation Methods Yesterday and Today -- Abstract -- 8.1 Introduction -- 8.2 Rare Earth Elements -- 8.2.1 General Characteristics -- 8.2.2 The Occurrence of Rare Earth Elements -- 8.2.3 Physicochemical Properties of Rare Earth Elements -- 8.2.4 Application of Rare Earth Metals -- 8.2.5 Production and Consumption of Rare Earth Elements in the World -- 8.3 Rare Earth Element Recovery from Nickel-Metal Hydride Batteries -- 8.4 Rare Earth Element Recovery from Permanent Magnets -- 8.5 Separation of High-Purity Rare Earth Elements -- 8.5.1 Separations of Rare Earth Elements of High Purity Using Cation Exchangers -- 8.5.2 Separations of Rare Earth Elements of High Purity Using Anion Exchangers -- 8.5.3 Separations of Rare Earth Elements of High Purity Using Chelating Ion Exchangers -- 8.6 Current Technologies -- 8.7 Conclusions -- References -- 9 Sequestration of Heavy Metals from Industrial Wastewater Using Composite Ion Exchangers -- Abstract -- 9.1 Introduction -- 9.2 Ion-Exchange Materials. , 9.2.1 Organic Materials -- 9.2.2 Inorganic Materials -- 9.2.3 Composite Materials -- 9.2.3.1 Hybrid Materials -- 9.2.3.2 Nanocomposite -- 9.3 Mechanism of Ion-Exchange Process -- 9.4 Conclusion -- Acknowledgements -- References -- 10 Applications of Organic Ion Exchange Resins in Water Treatment -- Abstract -- 10.1 Introduction -- 10.2 Removal of Heavy Metals -- 10.3 Removal of Organics -- 10.3.1 Natural Organic Matter (NOM) -- 10.3.2 Disinfection by-Products (DBPs) -- 10.3.3 Surfactants -- 10.3.4 Pharmaceuticals -- 10.3.5 Dyes -- 10.3.6 Small Organic Matter -- 10.4 Desalination -- 10.5 Boron Removal -- 10.6 Removal of Anions -- 10.7 Removal of Cations -- 10.7.1 Hardness -- 10.7.2 Ammonium -- 10.8 Conclusions -- References.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Singapore :Springer Singapore Pte. Limited,
    Keywords: Microbial biotechnology. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (734 pages)
    Edition: 1st ed.
    ISBN: 9789811622250
    Series Statement: Environmental and Microbial Biotechnology Series
    Language: English
    Note: Intro -- Contents -- About the Editors -- 1: Application of Endophyte Microbes for Production of Secondary Metabolites -- 1.1 Introduction -- 1.2 Origin and Evolution of Endophytes -- 1.3 Endophyte Diversity -- 1.4 Close Relationship Between Endophytes and Medicinal Herbs -- 1.5 Endophytes and Secondary Metabolites -- 1.6 Terpenoids -- 1.7 Phenolics -- 1.8 Flavonoids -- 1.9 Alkaloids -- 1.10 Glycosides -- 1.11 Saponins -- 1.12 Polyketides -- 1.13 Coumarins -- 1.14 Steroids -- 1.15 Conclusion and Perspectives -- References -- 2: Application of Microbes in Synthesis of Electrode Materials for Supercapacitors -- 2.1 Introduction -- 2.1.1 Basics of Supercapacitors -- 2.1.2 Electrode Materials for Supercapacitors -- 2.1.3 Why Microbes in Energy Storage Devices? -- 2.2 Different Microbes Commonly Used in EES -- 2.2.1 Bacteria -- What so Special About Bacterial Cellulose? -- 2.2.2 Viruses -- 2.2.3 Fungi -- 2.3 Microbes as Bio-templates for Energy Storage Materials -- 2.3.1 Bacteria as Bio-templates -- 2.3.2 Fungi as Bio-templates -- 2.3.3 Viruses as Bio-templates -- 2.4 Microbe-Based Carbon Materials as Supporting Matrix -- 2.5 Microbe-Derived Carbons for Energy Storage Applications -- 2.5.1 Bacteria-Derived Carbons for Energy storage applications -- 2.5.2 Fungi-Derived Carbons for Energy Storage Applications -- 2.5.3 Microbe-Derived Carbon-Based Nanocomposites as Energy Storage Materials -- 2.6 Conclusion and Future Prospects -- References -- 3: Application of Microbes in Climate-Resilient Crops -- 3.1 Introduction -- 3.2 Heat Stress Tolerance -- 3.3 Cold Stress Tolerance -- 3.4 Submergence Stress Tolerance -- 3.5 Salinity and Drought Stress Tolerance -- 3.6 Conclusion and Future Perspectives -- References -- 4: Application of Microbes in Biotechnology, Industry, and Medical Field -- 4.1 Overview of Microorganisms -- 4.1.1 Prokaryotic Microorganisms. , Bacteria -- Archaea -- 4.1.2 Eukaryotic Microorganisms -- Protist -- Fungi -- Virus -- 4.2 Principles -- 4.2.1 Screening for Microbial Products -- Screening Methods -- 4.2.2 Microbial Bioprocess -- Optimization -- Sustainable Technologies -- 4.2.3 Enzymology -- 4.2.4 Gene Manipulation -- Recombinant DNA Technology -- 4.3 Applications -- 4.3.1 Industry -- Food-Fermented Foods -- Improvement of Food Quality -- Improvement Efficiency and Productivity of Process -- Food Additives -- Agroindustry -- Pest in Crops -- Crop Yield and Product Quality -- Construction -- Chemical Industry -- Cleaning -- Bioremediation -- Chemical-Based Cleaning Products -- 4.3.2 Environment -- Wastewater Treatment -- Solid Hazardous Treatment -- Composting -- Anaerobic Digestion -- Metal Recovery -- Microbial Biofuels -- Biomethanol -- Bioethanol -- Butanol -- Biodiesel -- Medical Biotechnology -- 4.4 Conclusions -- References -- 5: Applications of Microbes for Energy -- 5.1 Introduction -- 5.2 Microbes for Energy Applications -- 5.2.1 Microbes for Fuel Cells -- 5.2.2 Microbes for Hydrogen Production -- 5.2.3 Microbes for Methane Production -- 5.2.4 Microbes for Ethanol Production -- 5.2.5 Microbes for Biodiesel Production -- 5.2.6 Microbes for Electrosynthesis -- 5.2.7 Microbes for Energy Storage -- 5.3 Conclusion and Future Remarks -- References -- 6: Applications of Microbes in Electric Generation -- 6.1 Introduction -- 6.2 Different BFC Types -- 6.2.1 DET-BFC -- 6.2.2 MET-BFC -- 6.2.3 EBFC -- 6.2.4 MFC -- 6.3 Electrocatalytic Nanomaterials for EBFC -- 6.3.1 Carbon Materials -- 6.3.2 Metal Nanoparticles -- 6.3.3 Composite Materials -- 6.4 Electrocatalytic Nanomaterials for MFC -- 6.4.1 Electrocatalytic Nanomaterials for MFC Anode -- Carbon Nanomaterials -- Metal Nanomaterials -- Conductive Polymers -- 6.4.2 Electrocatalytic Nanomaterials for MFC Cathode. , Noble Metal-Based Materials -- Non-noble Metal-Based Materials -- 6.5 Summary and Prospect -- References -- 7: Application of Microbes in Household Products -- 7.1 Introduction -- 7.2 Household Products -- 7.2.1 Cleaning Product -- 7.2.2 Cosmeceutical -- 7.2.3 Textiles -- 7.2.4 Others -- 7.3 Benefits and Challenges -- 7.4 Conclusion -- References -- 8: Electricity Generation and Wastewater Treatment with Membrane-Less Microbial Fuel Cell -- 8.1 Introduction -- 8.2 Electricity Generation -- 8.2.1 Anode and Cathode Electrodes -- Cathode Electrode -- Anode Electrode -- 8.2.2 Effect of Operating Temperature -- 8.2.3 Effect of pH -- 8.2.4 Effect of Substrate Pretreatment -- 8.2.5 Effect of Reactor Design -- 8.2.6 Effect of Electrode Surface Area and Electrode Spacing -- 8.2.7 Effect of Substrate Conductivity -- 8.3 Water Treatment (Substrate) -- 8.4 Conclusion -- References -- 9: Microbes: Applications for Power Generation -- 9.1 Introduction -- 9.2 Reduction of the Environmental and Air Pollution -- 9.2.1 Natural Aerosols from Vegetation -- 9.2.2 Landfill Gas -- 9.2.3 Biogas -- Using Leachate of the Waste -- 9.2.4 Biodiesel -- 9.2.5 Bioethanol -- Using Celluloses -- Using Starch -- Using Sugar -- 9.2.6 Sewer -- 9.3 Energy Efficiency -- 9.3.1 Microorganisms -- 9.3.2 Microbial Fuel Cells -- Using Natural Fermentation -- Using Biomass -- Using Domestic Wastewater -- Using Industrial Wastewater -- Using Sewage -- Using Crop Residue -- Using Mud -- Using Biogas Slurry -- 9.3.3 Newer Microbial Fuel Cells -- Using Electronophore (Traditional) -- Using Biochar (Latest) -- 9.3.4 Biogas -- Using Sewage -- Using Animal Waste -- Using Animal Manure -- 9.3.5 Biohydrogen -- 9.4 Availability -- 9.4.1 Biomass -- 9.5 Clean Energy -- 9.5.1 Algae -- 9.5.2 Microbial Biophotovoltaic Cells -- Using Algae -- Using Cyanobacteria -- Using Plant Rhizodeposition. , 9.6 Sustainability -- 9.6.1 Biomass -- Crop Residue -- 9.6.2 Camphor -- 9.7 Conclusion -- 9.8 Future Approach -- References -- 10: Applications of Microbes in Food Industry -- 10.1 Introduction -- 10.2 Applications of Microorganisms in Food Industry -- 10.2.1 Baking Industry Applications -- 10.2.2 Alcohol and Beverage Industry Applications -- 10.2.3 Enzyme Production and Its Applications -- 10.2.4 Production of Amino Acids -- 10.2.5 Microbial Detergents as Food Stain Removers -- 10.2.6 Dairy Industry Applications -- 10.2.7 Pigment Production -- 10.2.8 Organic Acid Production -- 10.2.9 Aroma and Flavouring Agents Production -- 10.2.10 Miscellaneous Applications -- Xanthan Gum Production -- Ripening Process -- Food Grade Paper Production -- Single-Cell Protein -- Applications in Other Foods -- 10.3 Summary -- References -- 11: Applications of Microbes in Human Health -- 11.1 Introduction -- 11.2 Human Microbiome -- 11.3 Probiotics -- 11.4 Properties of Probiotics -- 11.5 Probiotics Mechanism of Action -- 11.6 Oral Probiotics -- 11.6.1 Probiotics in Preventing Dental Caries Progression -- 11.6.2 Probiotics in Prevention of Gingival Inflammation -- 11.6.3 Probiotics in Prevention of Periodontal Diseases -- 11.7 Probiotics in Halitosis -- 11.7.1 Probiotics in Oral Mucositis -- 11.7.2 Benefits of Probiotics in General Health -- 11.7.3 Anti-Inflammatory Property -- 11.8 Antimicrobial Properties -- 11.9 Antioxidant Properties -- 11.10 Anticancer Properties -- 11.10.1 Probiotics in Treatment of Upper Respiratory Tract Infections -- 11.10.2 Probiotics in Treatment of Urogenital Infections -- 11.10.3 Probiotics in Improvement of Intestinal Health -- 11.10.4 Probiotics in Treatment of Chemotherapy and Radiotherapy Induced Diarrhea -- 11.10.5 Probiotics in Treatment of Anemia -- 11.11 Treatment and Prevention of Obesity -- 11.12 Probiotics as Immunomodulator. , 11.13 Conclusion -- References -- 12: Applications of Microbes in Soil Health Maintenance for Agricultural Applications -- 12.1 Introduction -- 12.2 Microbial Sources -- 12.2.1 Microalgae and Cyanobacteria -- 12.2.2 Fungi -- 12.2.3 Bacteria -- 12.3 Applications of Microbes -- 12.3.1 Plant Growth Regulators -- 12.3.2 Volatile Organic Compounds (VOCs) -- 12.3.3 Biotic Elicitors -- 12.3.4 Bioremediation -- 12.3.5 Biocontrol -- 12.3.6 Different Types of Microbes -- 12.4 Healthy Soil and Eco-Friendly Environment -- 12.4.1 Biofertilizers -- 12.4.2 Biopesticides -- 12.4.3 Bioherbicides -- 12.4.4 Bioinsecticides -- 12.5 Microbiome and Sustainable Agriculture -- 12.5.1 Benefits of Mycorrhizal Fungi -- 12.5.2 Soil and Environmental Health -- 12.6 Conclusion -- References -- 13: Co-functional Activity of Microalgae: Biological Wastewater Treatment and Bio-fuel Production -- 13.1 Introduction -- 13.2 Wastewater Treatment Using Microalgae -- 13.2.1 Wastewater Composition -- 13.2.2 Nutrient Removal -- Influence of Additives in Wastewater on Nutrient Removal by Microalgae -- 13.2.3 Heavy Metal Removal -- 13.3 Microalgae Cultivation and Harvesting -- 13.3.1 Open Ponds -- 13.3.2 Closed System (Photobioreactor PBRs) -- 13.3.3 Hybrid System -- 13.3.4 Harvesting Techniques -- 13.4 Bio-refinery -- 13.5 Bio-fuel Production Using Microalgae -- 13.5.1 Thermochemical Conversion -- 13.5.2 Biochemical Conversion/Fermentation -- 13.5.3 Chemical Reaction/Transesterification -- 13.5.4 Direct Combustion -- 13.6 Sustainability of Energy from Microalgae -- 13.7 Conclusions -- References -- 14: Microalgae Application in Chemicals, Enzymes, and Bioactive Molecules -- 14.1 Introduction -- 14.2 Microalgae-Based Products -- 14.2.1 Chemical Products -- 14.2.2 Bioactive Molecules -- 14.3 Microalgae Enzymes -- 14.4 Industrial Applications of Microalgae. , 14.5 Conclusions and Future Perspectives.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Newark :John Wiley & Sons, Incorporated,
    Keywords: Geochemistry. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (208 pages)
    Edition: 1st ed.
    ISBN: 9781119710080
    DDC: 551.9
    Language: English
    Note: Cover -- Half-Title Page -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- 1 Toxic Geogenic Contaminants in Serpentinitic Geological Systems: Occurrence, Behavior, Exposure Pathways, and Human Health Risks -- 1.1 Introduction -- 1.2 Serpentinitic Geological Systems -- 1.2.1 Nature, Occurrence, and Geochemistry -- 1.2.2 Occurrence and Behavior of Toxic Contaminants -- 1.3 Human Exposure Pathways -- 1.3.1 Occupational Exposure -- 1.3.2 Non-Occupational Exposure Routes -- 1.4 Human Health Risks and Their Mitigation -- 1.4.1 Health Risks -- 1.4.2 Mitigating Human Exposure and Health Risks -- 1.5 Future Perspectives -- 1.6 Conclusions -- Acknowledgements -- References -- 2 Benefits of Geochemistry and Its Impact on Human Health -- 2.1 Introduction -- 2.2 General Overview of Geochemistry and Human Health -- 2.2.1 Types of Geochemistry -- 2.2.2 Some Beneficial Effect of Some Mineral With Health Benefits -- 2.2.3 Application of Geochemistry on Human Health -- 2.3 Conclusion and Recommendations -- References -- 3 Applications of Geochemistry in Livestock: Health and Nutritional Perspective -- 3.1 Introduction -- 3.2 General and Global Perspective About Geochemistry in Livestock -- 3.3 Types of Geochemistry and Their Numerous Benefits -- 3.3.1 Analytical Geochemistry -- 3.3.2 Isotope Geochemistry -- 3.3.3 Low Temperature Geochemistry -- 3.3.4 Organic and Petroleum Geochemistry -- 3.4 Application of Geochemistry in Livestock -- 3.5 Geochemistry and Animal Health -- 3.6 General Overview of Geochemistry in Livestock's Merits of Geochemistry/Essential Minerals in Livestocks -- 3.6.1 Specific Examples of Authors That Have Used Essential Minerals in Livestock -- 3.6.2 Livestock in Relation to Geominerals -- 3.6.3 Trace Minerals Parallel Importance in Livestock -- 3.6.4 Heavy Metals Impact Livestock -- 3.7 Conclusion and Recommendations. , References -- 4 Application in Geochemistry Toward the Achievement of a Sustainable Agricultural Science -- 4.1 Introduction -- 4.2 General Overview on the Utilization of Geochemistry and Their Wide Application on Agriculture -- 4.2.1 Classification -- 4.2.2 Chemical Composition of Rocks -- 4.2.3 Effect of Some Beneficial Minerals in Agriculture -- 4.2.4 Beneficial Mineral Nutrients That are Crucial to the Development of Plants -- 4.3 Role of Geochemistry in Agriculture -- 4.4 Geochemical Effects of Heavy Metals on Crops Health -- 4.5 Conclusion and Recommendations -- References -- 5 Geochemistry, Extent of Pollution, and Ecological Impact of Heavy Metal Pollutants in Soil -- 5.1 Introduction -- 5.2 Material and Methods -- 5.2.1 Review Process -- 5.2.2 Ecological Risk Index -- 5.3 Toxic Heavy Metal and Their Impact to the Ecosystems -- 5.3.1 Arsenic -- 5.3.2 Cadmium -- 5.3.3 Chromium -- 5.3.4 Copper -- 5.3.5 Lead -- 5.3.6 Nickel -- 5.3.7 Zinc -- 5.4 Metal Pollution in Soil Across the Globe -- 5.5 Ecological and Human Health Risk Impacts of Heavy Metals -- 5.6 Conclusion -- References -- 6 Isotope Geochemistry -- 6.1 Introduction -- 6.2 Basic Definitions -- 6.2.1 The Notation -- 6.2.2 The Fractionation Factor -- 6.2.3 Isotope Fractionation -- 6.2.4 Mass Dependent and Independent Fractionations -- 6.3 Application of Traditional Isotopes in Geochemistry -- 6.3.1 Geothermometer -- 6.3.2 Isotopes in Biological System -- 6.3.3 Isotopes in Archaeology -- 6.3.4 Isotopes in Fossils and the Earliest Life -- 6.3.5 Isotopes in Hydrothermal and Ore Deposits -- 6.4 Non-Traditional Isotopes in Geochemistry -- 6.4.1 Application in Tracing of Source -- 6.4.2 Application in Process Tracing -- 6.4.3 Biological Cycling -- 6.5 Conclusion -- References -- 7 Environmental Geochemistry -- 7.1 Introduction -- 7.2 Overview of the Environmental Geochemistry -- 7.3 Conclusions. , 7.4 Abbreviations -- Acknowledgment -- References -- 8 Medical Geochemistry -- 8.1 Introduction -- 8.2 The Evolution of Geochemistry -- 8.3 This Science has Expanded Considerably to Become Distinct Branches -- 8.3.1 Cosmochemistry -- 8.3.2 The Economic Importance of Geochemistry -- 8.3.3 Analytical Geochemistry -- 8.3.4 Geochemistry of Radioisotopes -- 8.3.5 Medical Geochemistry and Human Health -- 8.3.6 Environmental Health and Safety -- 8.4 Conclusion -- References -- 9 Inorganic Geochemistry -- 9.1 Introduction -- 9.2 Elements and the Earth -- 9.2.1 Iron -- 9.2.2 Oxygen -- 9.2.3 Silicon -- 9.2.4 Magnesium -- 9.3 Geological Minerals -- 9.3.1 Quartz -- 9.3.2 Feldspar -- 9.3.3 Amphibole -- 9.3.4 Pyroxene -- 9.3.5 Olivine -- 9.3.6 Clay Minerals -- 9.3.7 Kaolinite -- 9.3.8 Bentonite, Montmorillonite, Vermiculite, and Biotite -- 9.4 Characterization Techniques -- 9.4.1 Powder X-Ray Diffraction -- 9.4.2 X-Ray Fluorescence Spectra -- 9.4.3 X-Ray Photoelectron Spectra -- 9.4.4 Electron Probe Micro-Analysis -- 9.4.5 Inductively Coupled Plasma Spectrometry -- 9.4.6 Fourier Transform Infrared Spectroscopy -- 9.4.7 Scanning Electron Microscopy Analysis -- 9.4.8 Energy Dispersive X-Ray Analysis -- 9.5 Conclusion -- References -- 10 Introduction and Scope of Geochemistry -- 10.1 Introduction -- 10.1.1 Periodic Table and Electronic Configuration -- 10.2 Periodic Properties -- 10.2.1 Ionization Enthalpy -- 10.2.2 Electron Affinity -- 10.2.3 Electro-Negativity -- 10.3 Chemical Bonding -- 10.3.1 Ionic Bond -- 10.3.2 Covalent Bond -- 10.3.3 Metallic Bond -- 10.3.4 Hydrogen Bond -- 10.3.5 Van der Waals Forces -- 10.4 Geochemical Classification and Distribution of Elements -- 10.4.1 Lithophiles -- 10.4.2 Siderophiles -- 10.4.3 Chalcophiles -- 10.4.4 Atmophiles -- 10.4.5 Biophiles -- 10.5 Chemical Composition of the Earth -- 10.6 Classification of Earth's Layers. , 10.6.1 Based on Chemical Composition -- 10.6.2 Based on Physical Properties -- 10.7 Spheres of the Earth -- 10.7.1 Geosphere/Lithosphere -- 10.7.2 Hydrosphere -- 10.7.3 Biosphere -- 10.7.4 Atmosphere -- 10.7.5 Troposphere -- 10.7.6 Stratosphere -- 10.7.7 Mesosphere -- 10.7.8 Thermosphere and Ionosphere -- 10.7.9 Exosphere -- 10.8 Sub-Disciplines of Geochemistry -- 10.9 Scope of Geochemistry -- 10.10 Conclusion -- References -- Index -- EULA.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Milton :Taylor & Francis Group,
    Keywords: Supercapacitors-Materials. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (365 pages)
    Edition: 1st ed.
    ISBN: 9781000750973
    Language: English
    Note: Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Preface -- Editors -- Contributors -- Chapter 1: Niobium Based Materials for Supercapacitors -- Chapter 2: Zinc-Based Materials for Supercapacitors -- Chapter 3: Defect Engineered Inorganic Materials for Supercapacitors -- Chapter 4: Vanadium-Based Compounds for Supercapacitors -- Chapter 5: Future Prospects and Challenges of Inorganic-Based Supercapacitors -- Chapter 6: Tungsten Based Materials for Supercapacitors -- Chapter 7: Microwave-Assisted Inorganic Materials for Supercapacitors -- Chapter 8: Tin-Based Materials for Supercapacitor -- Chapter 9: Inorganic Materials-Based Next-Generation Supercapacitors -- Chapter 10: Synthesis Approaches of Inorganic Materials -- Chapter 11: Metal-Organic Frameworks Derived Materials for Supercapacitors -- Chapter 12: Surface Morphology Induced Inorganic Materials for Supercapacitors -- Chapter 13: Molybdenum Based Materials for Supercapacitors Beyond TMDs -- Chapter 14: Iron-Based Electrode Materials for an Efficient Supercapacitor -- Chapter 15: Metal-Organic Frameworks for Supercapacitors -- Chapter 16: Amino Acid-Assisted Inorganic Materials for Supercapacitors -- Chapter 17: Co-Based Materials for Supercapacitors -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Newark :John Wiley & Sons, Incorporated,
    Keywords: Polysaccharides-Industrial applications. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (800 pages)
    ISBN: 9781119711391
    DDC: 572.566
    Language: English
    Note: Cover -- Half-Title Page -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- 1 Natural Polysaccharides From Aloe vera L. Gel (Aloe barbadensis Miller): Processing Techniques and Analytical Methods -- 1.1 Introduction -- 1.1.1 Gel Composition from A. vera -- 1.2 Applications of A. vera Mucilaginous Gel or Fractions -- 1.3 Aloe vera Gel Processing -- 1.3.1 Obtaining Polysaccharide Fraction or Acemannan -- 1.4 Analytical Methods Applied -- 1.4.1 Total Carbohydrates, Oligosaccharides, Acemannan and Free Sugars -- 1.4.2 Analytical Techniques -- 1.4.2.1 Chromatography Analysis -- 1.4.2.2 Infrared Spectroscopy (IR) -- 1.4.2.3 Nuclear Magnetic Resonance Spectroscopy -- 1.4.2.4 Mass Spectrometry -- 1.4.2.5 Ultraviolet-Visible Spectroscopy -- 1.4.2.6 Comprehensive Microarray Polymer Profiling -- 1.5 Conclusion -- References -- 2 Cell Wall Polysaccharides -- 2.1 Introduction to Cell Wall -- 2.2 Plant Cell Wall Polysaccharides -- 2.2.1 Cellulose -- 2.2.2 Hemicellulose -- 2.2.2.1 Xyloglucan -- 2.2.2.2 Xylans -- 2.2.2.3 Mannans -- 2.2.3 Callose -- 2.2.4 Pectic Polysaccharides -- 2.2.4.1 Homogalacturonan (HG) -- 2.2.4.2 Arabinan -- 2.3 Algal Cell Wall Polysaccharides -- 2.3.1 Alginates -- 2.3.2 Sulfated Galactans -- 2.3.3 Fucoidans -- 2.4 Fungal Cell Wall Polysaccharides -- 2.4.1 Glucan -- 2.4.2 Chitin and Chitosan -- 2.5 Bacterial Cell Wall Polysaccharides -- 2.5.1 Peptidoglycan -- 2.5.2 Lipopolysaccharides -- References -- 3 Marine Polysaccharides: Properties and Applications -- 3.1 Introduction -- 3.2 Polysaccharide Origins -- 3.3 Properties -- 3.3.1 Cellulose -- 3.3.2 Chitosan -- 3.3.3 Alginate -- 3.3.4 Carrageenan -- 3.3.5 Agar -- 3.3.6 Porphyran -- 3.3.7 Fucoidan -- 3.3.8 Ulvan -- 3.3.9 Exopolysaccharides From Microalgae -- 3.4 Applications of Polysaccharides -- 3.4.1 Biomedical Applications -- 3.4.1.1 Cellulose -- 3.4.1.2 Chitosan. , 3.4.1.3 Alginate -- 3.4.2 Food Applications -- 3.4.2.1 Cellulose -- 3.4.2.2 Chitosan -- 3.4.2.3 Alginates -- 3.4.2.4 Carrageenan -- 3.4.2.5 Agar -- 3.4.3 Pharmaceutical and Nutraceutical Applications -- 3.4.3.1 Cellulose -- 3.4.3.2 Chitosan -- 3.4.3.3 Alginate -- 3.4.3.4 Carrageenan -- 3.4.3.5 Porphyran -- 3.4.3.6 Fucoidan -- 3.4.4 Agriculture -- 3.5 Conclusions -- References -- 4 Seaweed Polysaccharides: Structure, Extraction and Applications -- 4.1 Introduction -- 4.1.1 Agar -- 4.1.2 Carrageenan -- 4.1.3 Alginate (Alginic Acid, Algin) -- 4.1.4 Fucoidan -- 4.1.5 Laminaran -- 4.1.6 Ulvan -- 4.2 Conclusion -- References -- 5 Agars: Properties and Applications -- 5.1 History and Origin of Agar -- 5.1.1 Agarophytes Used in Agar Manufacturing -- 5.2 Physical Properties of Agar Producing Seaweeds -- 5.3 Agar Manufacturing -- 5.3.1 Types of Agar Manufacturing -- 5.3.1.1 Freeze-Thaw Method -- 5.3.1.2 Syneresis Method -- 5.4 Structure of Agar -- 5.5 Heterogeneity of Agar -- 5.6 Physico-Chemical Characteristics of Agar -- 5.7 Chemical Characteristics of Agar -- 5.8 Factors Influencing the Characteristics of Agar -- 5.8.1 Techniques to Analyze the Fine Chemical Structure of Agar -- 5.8.2 Synergies and Antagonisms of Agar Gels -- 5.9 Uses of Agar in Various Sectors -- 5.9.1 Applications of Agar in Food Industry -- 5.9.2 Application of Agar in Harvesting Insects and Worms -- 5.9.3 Vegetable Tissue Culture Formulations -- 5.9.4 Culture Media for Microbes -- 5.9.5 Industrial Applications of Agar -- 5.10 Conclusion and Discussion -- References -- 6 Biopolysaccharides: Properties and Applications -- 6.1 Structure and Classification of Biopolysaccharides -- 6.1.1 Structure -- 6.1.2 Classification -- 6.1.3 Structural Characterization Techniques -- 6.2 Uses and Applications of Biopolysaccharides -- 6.2.1 Functional Fibers -- 6.2.2 Biomedicine. , 6.2.2.1 Tissue Engineering -- 6.2.2.2 Wound Healing -- 6.2.2.3 Drug Loading and Delivery -- 6.2.2.4 Therapeutics -- 6.2.3 Cosmetics -- 6.2.4 Foods and Food Ingredients -- 6.2.5 Biofuels -- 6.2.6 Wastewater Treatment -- 6.2.7 Textiles -- 6.3 Conclusion -- References -- 7 Chitosan Derivatives: Properties and Applications -- 7.1 Introduction -- 7.2 Properties of Chitosan Derivatives -- 7.2.1 Physiochemical Properties -- 7.2.2 Functional Properties -- 7.2.3 Biological Properties of Chitosan -- 7.3 Applications of Chitosan Derivatives -- 7.3.1 Anticancer Agents -- 7.3.2 Bone Tissue Material Formation -- 7.3.3 Wound Healing, Tissue Regeneration and Antimicrobial Resistance -- 7.3.4 Drug Delivery -- 7.3.5 Chromatographic Separations -- 7.3.6 Waste Management -- 7.3.7 Food Industry -- 7.3.8 In Cosmetics -- 7.3.9 In Paint as Antifouling Coatings -- 7.4 Conclusions -- Acknowledgement -- References -- 8 Green Seaweed Polysaccharides Inventory of Nador Lagoon in North East Morocco -- 8.1 Introduction -- 8.2 Nador Lagoon: Situation and Characteristics -- 8.3 Seaweed -- 8.4 Polysaccharides in Seaweed -- 8.5 Algae Polysaccharides in Nador Lagoon's Seaweed -- 8.5.1 C. prolifera -- 8.5.1.1 Sulfated Galactans -- 8.5.2 U. rigida & -- E. intestinalis -- 8.5.2.1 Ulvan -- 8.5.3 C. adhaerens, C. bursa, C. tomentosum -- 8.5.3.1 Sulfated Arabinans -- 8.5.3.2 Sulfated Arabinogalactans -- 8.5.3.3 Mannans -- 8.6 Conclusion -- References -- 9 Salep Glucomannan: Properties and Applications -- 9.1 Introduction -- 9.2 Production -- 9.3 Composition and Physicochemical Structure -- 9.4 Rheological Properties -- 9.5 Purification and Deacetylation -- 9.6 Food Applications -- 9.6.1 Beverage -- 9.6.2 Ice Cream and Emulsion Stabilizing -- 9.6.3 Edible Film/Coating -- 9.6.4 Gelation -- 9.7 Health Benefits -- 9.8 Conclusions and Future Trends -- References. , 10 Exudate Tree Gums: Properties and Applications -- 10.1 Introduction -- 10.1.1 Gum Arabic -- 10.1.2 Gum Karaya -- 10.1.3 Gum Kondagogu -- 10.1.4 Gum Ghatti -- 10.1.5 Gum Tragacanth -- 10.1.6 Gum Olibanum -- 10.2 Nanobiotechnology Applications -- 10.3 Minor Tree Gums -- 10.4 Conclusions -- Acknowledgment -- References -- 11 Cellulose and its Derivatives: Properties and Applications -- 11.1 Introduction -- 11.2 Main Raw Materials -- 11.3 Composition and Chemical Structure of Lignocellulosic Materials -- 11.4 Cellulose: Chemical Backbone and Crystalline Formats -- 11.5 Cellulose Extraction -- 11.5.1 Mechanical Methods -- 11.5.2 Chemical Methods -- 11.6 Cellulose Products and its Derivatives -- 11.7 Main Applications -- 11.8 Conclusion -- References -- 12 Starch and its Derivatives: Properties and Applications -- 12.1 Introduction -- 12.2 Physicochemical and Functional Properties of Starch -- 12.2.1 Size, Morphology and Crystallinity of Starch Granules -- 12.2.2 Physical Properties due to Associated Lipids, Proteins and Phosphorus With Starch Granules -- 12.2.3 Solubility and Swelling Capacity of Starch -- 12.2.4 Gelatinization and Retrogradation of Starch -- 12.2.5 Birefringence and Glass Transition Temperature of Starch -- 12.2.6 Rheological and Thermal Properties of Starch -- 12.2.7 Transmittance and Opacity of Starch -- 12.2.8 Melt Processability of Starch -- 12.3 Modification of Starch -- 12.3.1 Physical Modification of Starch -- 12.3.2 Chemical Modification of Starch -- 12.3.3 Dual Modification of Starch -- 12.3.4 Enzymatic Modification of Starch -- 12.3.5 Genetic Modification of Starch -- 12.4 Application of Starch and its Derivatives -- 12.4.1 In Food Industry -- 12.4.2 In Paper Industry -- 12.4.3 Starch as Binders -- 12.4.4 In Detergent Products -- 12.4.5 As Biodegradable Thermoplastic Materials or Bioplastics. , 12.4.6 In Pharmaceutical and Cosmetic Industries -- 12.4.7 As Industrial Raw Materials -- 12.4.8 As Adsorbents for Environmental Applications -- 12.4.9 As Food Packaging Materials -- 12.4.10 In Drug Delivery -- 12.4.11 As Antimicrobial Films and Coatings -- 12.4.12 In Advanced Functional Materials -- 12.5 Conclusion -- References -- 13 Crystallization of Polysaccharides -- 13.1 Introduction -- 13.2 Principles of Crystallization of Polysaccharides -- 13.3 Techniques for Crystallinity Measurement -- 13.4 Crystallization Behavior of Polysaccharides -- 13.4.1 Cellulose -- 13.4.2 Chitosan and Chitin -- 13.4.3 Starch -- 13.5 Polymer/Polysaccharide Crystalline Nanocomposites -- 13.6 Conclusion -- References -- 14 Polysaccharides as Novel Materials for Tissue Engineering Applications -- 14.1 Introduction -- 14.2 Types of Scaffolds for Tissue Engineering -- 14.3 Biomaterials for Tissue Engineering -- 14.4 Polysaccharide-Based Scaffolds for Tissue Engineering -- 14.4.1 Alginate-Based Scaffolds -- 14.4.2 Chitosan-Based Scaffolds -- 14.4.3 Cellulose-Based Scaffolds -- 14.4.4 Dextran and Pullulan-Based Scaffolds -- 14.4.5 Starch-Based Scaffolds -- 14.4.6 Xanthan-Based Scaffolds -- 14.4.7 Glycosaminoglycans-Based Scaffolds -- 14.5 Current Challenges and Future Perspectives -- Acknowledgements -- References -- 15 Structure and Solubility of Polysaccharides -- 15.1 Introduction -- 15.2 Polysaccharide Structure and Solubility in Water -- 15.3 Solubility and Molecular Weight -- 15.4 Solubility and Branching -- 15.5 Polysaccharide Solutions -- 15.6 Conclusions -- Acknowledgments -- References -- 16 Polysaccharides: An Efficient Tool for Fabrication of Carbon Nanomaterials -- 16.1 Introduction -- 16.2 Aerogels -- 16.2.1 Plant and Bacterial Cellulose -- 16.2.2 Carbon Derived From Nanocrystalline Cellulose of Plant Origin. , 16.2.3 Carbon Aerogels Produced From Bacterial Cellulose.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Newark :John Wiley & Sons, Incorporated,
    Keywords: Layer structure (Solids). ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (403 pages)
    ISBN: 9781119655206
    DDC: 620.11
    Language: English
    Note: Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 2D Metal-Organic Frameworks -- 1.1 Introduction -- 1.2 Synthesis Approaches -- 1.2.1 Selection of Synthetic Raw Materials -- 1.2.2 Solvent Volatility Method -- 1.2.3 Diffusion Method -- 1.2.3.1 Gas Phase Diffusion -- 1.2.3.2 Liquid Phase Diffusion -- 1.2.4 Sol-Gel Method -- 1.2.5 Hydrothermal/Solvothermal Synthesis Method -- 1.2.6 Stripping Method -- 1.2.7 Microwave Synthesis Method -- 1.2.8 Self-Assembly -- 1.2.9 Special Interface Synthesis Method -- 1.2.10 Surfactant-Assisted Synthesis Method -- 1.2.11 Ultrasonic Synthesis -- 1.3 Structures, Properties, and Applications -- 1.3.1 Structure and Properties of MOFs -- 1.3.2 Application in Biomedicine -- 1.3.3 Application in Gas Storage -- 1.3.4 Application in Sensors -- 1.3.5 Application in Chemical Separation -- 1.3.6 Application in Catalysis -- 1.3.7 Application in Gas Adsorption -- 1.4 Summary and Outlook -- Acknowledgements -- References -- Chapter 2 2D Black Phosphorus -- 2.1 Introduction -- 2.2 The Research on Black Phosphorus -- 2.2.1 The Structure and Properties -- 2.2.1.1 The Structure of Black Phosphorus -- 2.2.1.2 The Properties of Black Phosphorus -- 2.2.2 Preparation Methods -- 2.2.2.1 Mechanical Exfoliation -- 2.2.2.2 Liquid-Phase Exfoliation -- 2.2.3 Antioxidant -- 2.2.3.1 Degradation Mechanism -- 2.2.3.2 Adding Protective Layer -- 2.2.3.3 Chemical Modification -- 2.2.3.4 Doping -- 2.3 Applications of Black Phosphorus -- 2.3.1 Electronic and Optoelectronic -- 2.3.1.1 Field-Effect Transistors -- 2.3.1.2 Photodetector -- 2.3.2 Energy Storage and Conversion -- 2.3.2.1 Catalysis -- 2.3.2.2 Batteries -- 2.3.2.3 Supercapacitor -- 2.3.3 Biomedical -- 2.4 Conclusion and Outlook -- Acknowledgements -- References -- Chapter 3 2D Metal Carbides -- 3.1 Introduction -- 3.2 Synthesis Approaches -- 3.2.1 Ti3C2 Synthesis. , 3.2.2 V2C Synthesis -- 3.2.3 Ti2C Synthesis -- 3.2.4 Mo2C Synthesis -- 3.3 Structures, Properties, and Applications -- 3.3.1 Structures and Properties of 2D Metal Carbides -- 3.3.1.1 Structures and Properties of Ti3C2 -- 3.3.1.2 Structural Properties of Ti2C -- 3.3.1.3 Structural Properties of Mo2C -- 3.3.1.4 Structural Properties of V2C -- 3.3.2 Carbide Materials in Energy Storage Applications -- 3.3.2.1 Ti3C2 -- 3.3.2.2 Ti2C -- 3.3.2.3 V2C -- 3.3.2.4 Mo2C -- 3.3.3 Metal Carbide Materials in Catalysis Applications -- 3.3.3.1 Ti3C2 -- 3.3.3.2 V2C -- 3.3.3.3 Mo2C -- 3.3.4 Metal Carbide Materials in Environmental Management Applications -- 3.3.4.1 Ti3C2 in Environmental Management Applications -- 3.3.4.2 Ti2C in Environmental Management Applications -- 3.3.4.3 V2C in Environmental Management Applications -- 3.3.4.4 Mo2C in Environmental Management Applications -- 3.3.5 Carbide Materials in Biomedicine Applications -- 3.3.5.1 Ti3C2 in Biomedicine Applications -- 3.3.5.2 Ti2C in Biomedicine Applications -- 3.3.5.3 V2C in Biomedicine Applications -- 3.3.5.4 Mo2C in Biomedicine Applications -- 3.3.6 Carbide Materials in Gas Sensing Applications -- 3.3.6.1 Ti3C2 in Gas Sensing Applications -- 3.3.6.2 Ti2C in Gas Sensing Applications -- 3.3.6.3 V2C in Gas Sensing Applications -- 3.3.6.4 Mo2C in Gas Sensing Applications -- 3.4 Summary and Outlook -- Acknowledgements -- References -- Chapter 4 2D Carbon Materials as Photocatalysts -- 4.1 Introduction -- 4.2 Carbon Nanostructured-Based Materials -- 4.2.1 Forms of Carbon -- 4.2.2 Synthesis of Carbon Nanostructured-Based Materials -- 4.3 Photo-Degradation of Organic Pollutants -- 4.3.1 Graphene, Graphene Oxide, Graphene Nitride (g-C3N4) -- 4.3.1.1 Graphene-Based Materials -- 4.3.1.2 Graphene Nitride (g-C3N4) -- 4.3.2 Carbon Dots (CDs) -- 4.3.3 Carbon Spheres (CSs). , 4.4 Carbon-Based Materials for Hydrogen Production -- 4.5 Carbon-Based Materials for CO2 Reduction -- References -- Chapter 5 Sensitivity Analysis of Surface Plasmon Resonance Biosensor Based on Heterostructure of 2D BlueP/MoS2 and MXene -- 5.1 Introduction -- 5.2 Proposed SPR Sensor, Design Considerations, and Modeling -- 5.2.1 SPR Sensor and Its Sensing Principle -- 5.2.2 Design Consideration -- 5.2.2.1 Layer 1: Prism for Light Coupling -- 5.2.2.2 Layer 2: Metal Layer -- 5.2.2.3 Layer 3: BlueP/MoS2 Layer -- 5.2.2.4 Layer 4: MXene (Ti3C2Tx) Layer as BRE for Biosensing -- 5.2.2.5 Layer 5: Sensing Medium (RI-1.33-1.335) -- 5.2.3 Proposed Sensor Modeling -- 5.3 Results Discussion -- 5.3.1 Role of Monolayer BlueP/MoS2 and MXene (Ti3C2Tx) and Its Comparison With Conventional SPR -- 5.3.2 Influence of Varying Heterostructure Layers for Proposed Design -- 5.3.3 Effect of Changing Prism Material and Metal on Performance of Proposed Design -- 5.4 Conclusion -- References -- Chapter 6 2D Perovskite Materials and Their Device Applications -- 6.1 Introduction -- 6.2 Structure -- 6.2.1 Crystal Structure -- 6.2.2 Electronic Structure of 2D Perovskites -- 6.2.3 Structure of Photovoltaic Cell -- 6.3 Discussion and Applications -- 6.4 Conclusion -- References -- Chapter 7 Introduction and Significant Parameters for Layered Materials -- 7.1 Graphene -- 7.2 Phosphorene -- orthorhombic rhombohedral Simple cubic -- semiconductor semimetal metal -- 7.3 Silicene -- 7.4 ZnO -- 7.5 Transition Metal Dichalcogenides (TMDCs) -- 7.6 Germanene and Stanene -- 7.7 Heterostructures -- References -- Chapter 8 Increment in Photocatalytic Activity of g-C3N4 Coupled Sulphides and Oxides for Environmental Remediation -- 8.1 Introduction -- 8.2 GCN Coupled Metal Sulphide Heterojunctions for Environment Remediation -- 8.2.1 GCN and MoS2-Based Photocatalysts. , 8.2.2 GCN and CdS-Based Heterojunctions -- 8.2.3 Some Other GCN Coupled Metal Sulphide Photocatalysts -- 8.3 GCN Coupled Metal Oxide Heterojunctions for Environment Remediation -- 8.3.1 GCN and MoO3-Based Heterojunctions -- 8.3.2 GCN and Fe2O3-Based Heterojunctions -- 8.3.3 Some Other GCN Coupled Metal Oxide Photocatalysts -- 8.4 Conclusions and Outlook -- References -- Chapter 9 2D Zeolites -- 9.1 Introduction -- 9.1.1 What is 2D Zeolite? -- 9.1.2 Advancement in Zeolites to 2D Zeolite -- 9.2 Synthetic Method -- 9.2.1 Bottom-Up Method -- 9.2.2 Top-Down Method -- 9.2.3 Support-Assisted Method -- 9.2.4 Post-Synthesis Modification of 2D Zeolites -- 9.3 Properties -- 9.4 Applications -- 9.4.1 Petro-Chemistry -- 9.4.2 Biomass Conversion -- 9.4.2.1 Pyrolysis of Solid Biomass -- 9.4.2.2 Condensation Reactions -- 9.4.2.3 Isomerization -- 9.4.2.4 Dehydration Reactions -- 9.4.3 Oxidation Reactions -- 9.4.4 Fine Chemical Synthesis -- 9.4.5 Organometallics -- 9.5 Conclusion -- References -- Chapter 10 2D Hollow Nanomaterials -- 10.1 Introduction -- 10.2 Structural Aspects of HNMs -- 10.3 Synthetic Approaches -- 10.3.1 Template-Based Strategies -- 10.3.1.1 Hard Templating -- 10.3.1.2 Soft Templating -- 10.3.2 Self-Templating Strategies -- 10.3.2.1 Surface Protected Etching -- 10.3.2.2 Ostwald Ripening -- 10.3.2.3 Kirkendall Effect -- 10.3.2.4 Galvanic Replacement -- 10.4 Medical Applications of HNMs -- 10.4.1 Imaging and Diagnosis Applications -- 10.4.2 Applications of Nanotube Arrays -- 10.4.2.1 Pharmacy and Medicine -- 10.4.2.2 Cancer Therapy -- 10.4.2.3 Immuno and Hyperthermia Therapy -- 10.4.2.4 Infection Therapy and Gene Therapy -- 10.4.3 Hollow Nanomaterials in Diagnostics and Therapeutics -- 10.4.4 Applications in Regenerative Medicine -- 10.4.5 Anti-Neurodegenerative Applications -- 10.4.6 Photothermal Therapy -- 10.4.7 Biosensors. , 10.5 Non-Medical Applications of HNMs -- 10.5.1 Catalytic Micro or Nanoreactors -- 10.5.2 Energy Storage -- 10.5.2.1 Lithium Ion Battery -- 10.5.2.2 Supercapacitor -- 10.5.3 Nanosensors -- 10.5.4 Wastewater Treatment -- 10.6 Toxicity of 2D HNMs -- 10.7 Future Challenges -- 10.8 Conclusion -- Acknowledgement -- References -- Chapter 11 2D Layered Double Hydroxides -- 11.1 Introduction -- 11.2 Structural Aspects -- 11.3 Synthesis of LDHs -- 11.3.1 Co-Precipitation Method -- 11.3.2 Urea Hydrolysis -- 11.3.3 Ion-Exchange Method -- 11.3.4 Reconstruction Method -- 11.3.5 Hydrothermal Method -- 11.3.6 Sol-Gel Method -- 11.4 Nonmedical Applications of LDH -- 11.4.1 Adsorbent -- 11.4.2 Catalyst -- 11.4.3 Sensors -- 11.4.4 Electrode -- 11.4.5 Polymer Additive -- 11.4.6 Anion Scavenger -- 11.4.7 Flame Retardant -- 11.5 Biomedical Applications -- 11.5.1 Biosensors -- 11.5.2 Scaffolds -- 11.5.3 Anti-Microbial Agents -- 11.5.4 Drug Delivery -- 11.5.5 Imaging -- 11.5.6 Protein Purification -- 11.5.7 Gene Delivery -- 11.6 Toxicity -- 11.7 Conclusion -- Acknowledgement -- References -- Chapter 12 Experimental Techniques for Layered Materials -- 12.1 Introduction -- 12.2 Methods for Synthesis of Graphene Layered Materials -- 12.3 Selection of a Suitable Metallic Substrate -- 12.4 Graphene Synthesis by HFTCVD -- 12.5 Graphene Transfer -- 12.6 Characterization Techniques -- 12.6.1 X-Ray Diffraction Technique -- d D k -- 12.6.2 Field Emission Scanning Electron Microscopy (FESEM) -- 12.6.3 Transmission Electron Microscopy (TEM) -- 12.6.4 Fourier Transform Infrared Radiation (FTIR) -- 12.6.5 UV-Visible Spectroscopy -- 12.6.6 Raman Spectroscopy -- 12.6.7 Low Energy Electron Microscopy (LEEM) -- 12.7 Potential Applications of Graphene and Derived Materials -- 12.8 Conclusion -- Acknowledgement -- References -- Chapter 13 Two-Dimensional Hexagonal Boron Nitride and Borophenes. , 13.1 Two-Dimensional Hexagonal Boron Nitride (2D h-BN): An Introduction.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Pesticides-Environmental aspects. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (360 pages)
    Edition: 1st ed.
    ISBN: 9783030547196
    Series Statement: Sustainable Agriculture Reviews Series ; v.48
    DDC: 363.7384
    Language: English
    Note: Intro -- Preface -- Contents -- About the Editors -- Contributors -- Chapter 1: Pesticide Residues Analysis by Electroanalytical Techniques -- 1.1 Introduction - Pesticides Analysis -- 1.2 Electroanalytical Techniques in Pesticides Analysis -- 1.3 An Overview of Pesticides Electroanalysis -- 1.3.1 Potentiometry -- 1.3.2 Amperometry -- 1.3.3 Voltammetry -- 1.3.3.1 Cyclic Voltammetry -- 1.3.3.2 Differential Pulse Voltammetry -- 1.3.3.3 Square Wave Voltammetry -- 1.3.4 Stripping Voltammetry -- 1.3.5 Electrochemical Impedance Spectroscopy -- 1.3.6 Electrochemical Detection Systems -- 1.4 Application of Electroanalytical Techniques in Pesticides Determination -- 1.4.1 Basic Instrumentation -- 1.4.1.1 Equipment -- 1.4.1.2 Electrochemical Cell -- 1.4.1.3 Electrodes -- 1.4.1.4 Supporting Electrolyte -- 1.4.2 Electroactivity Tests -- 1.4.2.1 Mercury-Based Electrodes -- 1.4.2.2 Noble Metals Electrodes -- 1.4.2.3 Carbon-Based Electrodes -- 1.4.2.4 Chemically Modified Electrodes -- 1.4.2.5 Biosensor -- 1.4.3 Experimental Parameters -- 1.4.3.1 Solvents -- 1.4.3.2 Supporting Electrolytes -- 1.4.3.3 Ionic Strength and pH -- 1.4.3.4 Stripping Steps -- 1.4.4 Parameters Related to Electroanalytical Technique -- 1.4.5 Analytical Parameters -- 1.4.6 Applications -- 1.5 Electrochemical Behavior of Pesticides from Different Chemical Class -- 1.6 Conclusions -- References -- Chapter 2: Protocols for Extraction of Pesticide Residues -- 2.1 Introduction -- 2.2 Liquid-Phase Extraction Techniques -- 2.2.1 Liquid-Liquid Extraction -- 2.2.2 Soxhlet Extraction -- 2.2.3 Microwave-Assisted Extraction -- 2.2.4 Pressurized Liquid Extraction -- 2.2.5 Supercritical Fluid Extraction -- 2.2.6 Liquid-Phase Microextraction Techniques -- 2.2.6.1 Single-Drop Microextraction -- 2.2.6.2 Hollow-Fiber Microextraction -- 2.2.6.3 Dispersive Liquid-Liquid Microextraction. , 2.3 Solid-Phase Extraction Techniques -- 2.3.1 Solid-Phase Extraction -- 2.3.2 Dispersive Solid-Phase Extraction: QuEChERS -- 2.3.3 Matrix Solid-Phase Extraction -- 2.3.4 Solid-Phase Microextraction -- 2.3.5 Stir Bar Sorptive Extraction -- 2.4 Gel Permeation Chromatography -- 2.5 Conclusions and Perspectives -- References -- Chapter 3: Analysis of Pesticide Residues by on Line Coupled Liquid Chromatography-Gas Chromatography Using the Through Oven T... -- 3.1 Introduction -- 3.2 Through Oven Transfer Adsorption Desorption Interface -- 3.3 Pesticide Residue Analysis -- 3.4 Pesticide Residue Analysis by Large Volume Injection -- 3.4.1 Pesticide Residue Analysis in Vegetables -- 3.4.2 Pesticide Residue Analysis in River Water -- 3.5 Pesticide Residue Analysis by on Line Coupled Liquid Chromatography-Gas Chromatography -- 3.5.1 Pesticide Residue Analysis in Water -- 3.5.2 Pesticides Residue analysis in Edible Oils -- 3.5.3 Pesticide Residue Analysis in Nuts -- References -- Chapter 4: Detectors for the Analysis of Pesticides Residues -- 4.1 Introduction -- 4.2 General Methods of Detection for Pesticides -- 4.2.1 Gas Chromatography (GC) -- 4.2.2 Liquid Chromatography (LC) and High-Performance Liquid Chromatography (HPLC) -- 4.2.3 Gas Chromatography-Mass Spectrometry (GC-MS) and High-Performance Liquid Chromatography-Mass Spectrometry (HPLC-MS) -- 4.2.4 Thin-Layer Chromatography (TLC) -- 4.2.5 Capillary Electrophoresis (CE) and Capillary Electrochromatography (CEC) -- 4.2.6 Immunoassays (IA) -- 4.2.7 Ultra-Performance Liquid Chromatography (UPLC) -- 4.2.8 Hydrophilic Interaction Liquid Chromatography (HILIC) -- 4.2.9 Other Techniques -- 4.3 Pesticide Residue Detection in Fruits and Vegetable Products -- 4.4 Pesticide Residue Detection in Plant Material -- 4.5 Pesticide Residue Detection in Water -- 4.6 Pesticide Residue Detection in Air. , 4.7 Pesticide Residue Detection in Soil -- 4.8 Conclusions -- References -- Chapter 5: Bioindicators of Pesticide Contaminations -- 5.1 Introduction -- 5.2 Pesticide in Environment, Air and Water -- 5.3 Bioindicators -- 5.3.1 Animals as Bioindicators for Pesticides Pollution -- 5.3.1.1 Zooplankton -- 5.3.1.2 Invertebrates -- Honey Bees and Bee Products -- Ants -- Earthworms -- Aquatic Insects -- 5.3.1.3 Vertebrates -- Birds -- Fish -- Wild Animals and Small Mammals -- 5.3.2 Plants as Bioindicators -- 5.3.2.1 Higher Plant -- 5.3.2.2 Lower Plants -- Phytoplankton -- Lichen and Mosses -- 5.3.2.3 Aquatic Macrophytes -- 5.3.3 Microorganisms -- 5.3.3.1 Terrestrial Microorganism -- 5.3.3.2 Aquatic Microorganism -- 5.3.4 Pesticides Toxicity Bioindicators for Humans -- 5.4 Conclusion and Future Research -- References -- Chapter 6: Occurrence and Removal of Pesticides in Drinking Water -- 6.1 Introduction -- 6.2 Dispersal of Water on Earth -- 6.3 Historical Perspectives -- 6.4 Pesticide Classification -- 6.4.1 Mode of Action -- 6.4.2 Target Insect -- 6.4.3 Chemical Composition -- 6.5 Sources of Pesticide Pollutants -- 6.5.1 Pesticides Water Pollution -- 6.6 Pesticide Properties -- 6.6.1 Adsorption -- 6.6.2 Solubility -- 6.6.3 Firmness -- 6.6.4 Evaporation -- 6.7 Pesticide Transportation -- 6.7.1 Surface Runoff and Erosion -- 6.7.2 Diffuse Source -- 6.7.3 Spray Drift -- 6.7.4 Leaching Processes -- 6.7.5 Overland Flow -- 6.8 Pesticide Poisoning -- 6.8.1 Organophosphates -- 6.8.2 Chlorpyrifos -- 6.8.3 Dichlorodiphenyltrichloroethane -- 6.8.4 Aldrin and Dieldrin -- 6.9 Pesticide Treatment Technologies -- 6.9.1 Membrane Technology -- 6.9.1.1 Reverse Osmosis -- 6.9.1.2 Microfiltration -- 6.9.1.3 Ultrafiltration -- 6.9.1.4 Nanofiltration -- 6.9.2 Ion Exchange Resins -- 6.9.3 Activated Carbon -- 6.9.4 Phytoremediation -- 6.9.5 Bioaugmentation. , 6.9.6 Electrocoagulation -- 6.10 Conclusion -- References -- Chapter 7: Degradation of Pesticides Residue by Engineered Nanomaterials -- 7.1 Introduction -- 7.1.1 Wordwide Consumption of Pesticides -- 7.1.2 Chemical Sketch and Grouping of Pesticides -- 7.1.3 Environmental Concerns of Harmful Pesticides -- 7.2 Classes of Engineered Nanomaterials -- 7.2.1 Carbon Based Engineered Nanomaterials -- 7.2.2 Metal and Metal Oxides Based Engineered Nanomaterials -- 7.2.3 Engineered Nanomaterials of Magnetic-Core Based Composites -- 7.2.4 Engineered Nanomaterials Based on Composites -- 7.2.5 Working Mechanisms of Engineered Nanomaterials -- 7.3 Degradation of Pesticides by Engineered Nanomaterials -- 7.3.1 Titanium Based Engineered Nanomaterials -- 7.3.2 Zinc Oxide Based Composite Nanomaterial -- 7.3.3 Tungsten Based Composite Nanomaterial -- 7.3.4 Composite Nanomaterials Using Adsorption and Reduction Approaches -- 7.3.5 Iron Based Composite Nanomaterial -- 7.3.6 Carbon Based Composite Nanomaterials -- 7.3.7 Polymeric Composite Nanomaterials -- 7.4 Importance of Green Synthesized Nanomaterials -- 7.5 Future Scope and Perspectives -- 7.6 Conclusion -- References -- Chapter 8: Environmental and Health Effects of Pesticide Residues -- 8.1 Introduction -- 8.2 Soil and Water Contaminations by Pesticide Residues -- 8.3 Pesticide Bioaccumulation and Bio-magnification in Living Systems -- 8.4 Impact of Pesticide Residues on Biodiversity -- 8.5 Impact of Pesticides Residues on Pollinators and Bees -- 8.6 Pesticides Residues and Food Chain Contamination -- 8.7 Pesticide Resdues and Health Concerns -- 8.7.1 Carcinogenic Effects of Pesticide Residues -- 8.7.2 Neurological Effects of Pesticide Residues -- 8.7.3 Endocrine Disruptions and Pesticide Residues -- 8.7.4 Effect of Pesticide Residues on Reproduction and Fertility -- 8.7.5 Pesticides Residues and Child Health. , 8.7.6 General Health Aspects and Pesticide Residues -- 8.8 Conclusion -- References -- Chapter 9: Pesticides Pollution and Analysis in Water -- 9.1 Introduction -- 9.2 Pesticides as Water Contaminants -- 9.3 Classification of Pesticides -- 9.4 Source, Fate and Transport of Pesticides -- 9.5 Environmental Effects of Pesticide Pollution -- 9.6 Health Effects Caused Due to Pesticides -- 9.7 Analysis of Pesticides -- 9.8 Thin-Layer Chromatography -- 9.9 Liquid Chromatography -- 9.10 Gas Chromatography -- 9.11 Miscellaneous Chromatography -- 9.12 Spectrometry Techniques -- 9.13 Electrophoresis Techniques -- 9.14 BioAssays -- 9.15 Biosensors -- 9.16 Conclusion & -- Future Perspectives -- References -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...