GLORIA

GEOMAR Library Ocean Research Information Access

You have 0 saved results.
Mark results and click the "Add To Watchlist" link in order to add them to this list.
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Green chemistry. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (299 pages)
    Edition: 1st ed.
    ISBN: 9783030678845
    Series Statement: Advances in Science, Technology and Innovation Series
    DDC: 660.0286
    Language: English
    Note: Intro -- Contents -- 1 Biomass-Derived Polyurethanes for Sustainable Future -- Abstract -- 1 Introduction -- 1.1 Chemicals for Preparation of Polyurethanes -- 1.2 Importance of Green Chemicals and Synthesis Methods -- 1.3 Characteristics of Biomaterials for Polyurethanes -- 2 Bio-Oils as a Renewable Resource for Polyurethanes -- 2.1 Epoxidation and Ring-Opening Reactions -- 2.2 Hydroformation and Hydrogenation Reactions -- 2.3 Ozonolysis -- 2.4 Thiol-Ene Reaction -- 2.5 Transesterification Reaction -- 3 Terpenes as Green Starting Chemicals for Polyurethanes -- 4 Lignin for Green Polymers -- 5 Conclusion -- References -- 2 Mechanochemistry: A Power Tool for Green Synthesis -- Abstract -- 1 Introduction -- 2 History of Mechanochemistry -- 3 Principles of Mechanochemistry -- 3.1 Mechanisms and Kinetics of Mechanochemistry -- 3.2 Effects of Reaction Parameters -- 4 Mechanochemical Synthesis of Materials -- 4.1 Mechanochemical Synthesis of Co-crystals -- 4.2 Mechanochemistry in Inorganic Synthesis -- 4.3 Mechanochemistry in Organic Synthesis -- 4.4 Mechanochemistry in Metal-Organic Frameworks (MOFs) -- 4.5 Mechanochemistry in Porous Organic Materials (POMs) -- 4.6 Mechanochemical Synthesis of Polymers -- 5 Conclusions -- References -- 3 Future Trends in Green Synthesis -- Abstract -- 1 Introduction -- 2 Green Chemistry Metrics -- 2.1 Atom Economy (AE) -- 2.2 Environmental Factor (E Factor) -- 2.3 Process Mass Intensity (PMI) -- 2.4 Reaction Mass Efficiency (RME) -- 3 Application of Green Concept in Synthesis -- 3.1 Solvent-Based Organic Synthesis -- 3.2 Aqueous Medium -- 3.2.1 Micellar Media -- 3.2.2 Different Non-Aqueous Media -- Ionic Liquids -- Fluorous Media -- Supercritical Fluid -- Solvent-Free Synthesis -- 4 Future Trends -- References -- 4 Plant-Mediated Green Synthesis of Nanoparticles -- Abstract -- 1 Introduction. , 2 Methods for Metallic Nanoparticle Biosynthesis -- 3 Green Biosynthesis of Metallic NPs -- 3.1 Gold Nanoparticles -- 3.2 Platinum Nanoparticles -- 3.3 Silver Nanoparticles -- 3.4 Zinc Oxide Nanoparticles -- 3.5 Titanium Dioxide Nanoparticles -- 4 Different Parts Used for the Synthesis of Metallic Nanoparticles -- 4.1 Fruit -- 4.2 Stem -- 4.3 Seeds -- 4.4 Flowers -- 4.5 Leaves -- 5 Conclusions -- References -- 5 Green Synthesis of Hierarchically Structured Metal and Metal Oxide Nanomaterials -- Abstract -- 1 Introduction -- 2 Advantages of Green Synthesis Methods -- 3 Green Synthesis Methods for Hierarchically Structured Metal and Metal Oxide Nanomaterials -- 3.1 Biological Methods -- 3.1.1 Using Microorganism -- Microorganisms as Reactant -- Microorganism as Template -- 3.1.2 Using Plant -- Plant as Reactant -- Plant as Template -- 3.1.3 Using Other Green Templates -- 3.2 Physical and Chemical Methods -- 3.2.1 Green Techniques -- 3.2.2 Green Reagents -- 3.2.3 Green Solvents -- 4 Growth Mechanism of Metal and Metal Oxide HSNs -- 4.1 Biological Method -- 4.1.1 Biomolecules as Reagents -- 4.1.2 Biomolecules as Templates -- 4.2 Physical and Chemical Methods -- 5 Applications of Hierarchically Structured Metal and Metal Oxide Nanomaterials -- 5.1 Biomedical Application -- 5.2 Environmental Remediation -- 5.2.1 Wastewater Treatment -- 5.2.2 Energy Storage -- 5.2.3 Sensing -- 6 Present Challenges and Future Prospect -- Acknowledgements -- References -- 6 Bioprivileged Molecules -- Abstract -- 1 Introduction -- 2 Four Carbon 1,4-Diacids -- 2.1 Succinic Acid -- 2.2 Fumaric Acid -- 2.3 Malic Acid -- 3 Furan 2,5-Dicarboxylic Acid (FDCA) -- 4 3-Hydroxypropionic Acid (3-HPA) -- 5 Glucaric Acid -- 6 Glycerol -- 7 Aspartic Acid -- 8 Itaconic Acid -- 9 3-Hydroxybutyrolactone -- 10 Sorbitol -- 11 Xylitol -- 12 Glutamic Acid -- 13 Levulinic Acid. , 14 Emerging Molecules -- 15 Conclusion -- References -- 7 Membrane Reactors for Green Synthesis -- Abstract -- 1 Introduction -- 2 Chemical Reaction Enzymatic MR Using Supercritical CO2-IL -- 2.1 Ionic Liquid Media Effect on Free CLAB -- 2.2 Butyl Propionate Synthesis Using Active Membranes SC-CO2 and SC-CO2/IL -- 2.3 Butyl Propionate Synthesis Using Active Membranes in Hexane/IL -- 3 Mixed Ionic Electronic MR -- 3.1 Methane Flow Rate and Concentration Effects on Side II of Membrane -- 3.2 Steam Flow Effect on Side I of Membrane -- 3.3 Temperature Effect -- 4 Green Synthesis of Methanol in a Membrane Reactor -- 5 Green Fuel Energy -- 5.1 Green H2 Energy -- 5.2 Biofuel Energy -- 5.3 Green Fuel Additive -- 6 Biocatalyst Membrane Reactors -- 7 Photocatalytic Membrane Reactors -- 8 Conclusions -- References -- 8 Application of Membrane in Reaction Engineering for Green Synthesis -- Abstract -- 1 Introduction -- 2 Applications of Membrane Reactors in Reaction Engineering -- 2.1 Syngas Production -- 2.2 Hydrogen Production -- 2.3 CO2 Thermal Decomposition -- 2.4 Higher Hydrocarbon Production -- 2.5 Methane Production -- 2.6 Ammonia Production -- 3 Environmental Impacts -- 4 Conclusions and Future Recommendations -- Acknowledgements -- References -- 9 Photo-Enzymatic Green Synthesis: The Potential of Combining Photo-Catalysis and Enzymes -- Abstract -- 1 Introduction -- 2 Principle -- 3 Enzymes Involved in Light-Driven Catalysis -- 3.1 Heme-Containing Enzymes -- 3.1.1 Cytochrome P450 -- 3.1.2 Peroxidases -- 3.2 Flavin-Based Enzyme -- 3.2.1 Baeyer-Villiger Monooxygenases -- 3.2.2 Old Yellow Enzymes -- 3.3 Metal Cluster-Centered Enzyme -- 3.3.1 Hydrogenases -- 3.3.2 Carbon Monoxide Dehydrogenases -- 4 Nanoparticle-Based Activation of Enzyme -- 5 Applications in Photo-Biocatalysis -- 5.1 Isolated Enzymes/Cell Lysates -- 6 Summary and Future Scope -- References. , 10 Biomass-Derived Carbons and Their Energy Applications -- Abstract -- 1 Introduction -- 2 Types of Biomass Materials -- 2.1 Plant-Based Carbons -- 2.2 Fruit-Based Carbons -- 2.3 Animal-Based Carbons -- 2.4 Microorganism-Based Carbons -- 3 Activation of Biomass-Derived Carbons -- 3.1 Activation of Carbons -- 3.1.1 Chemical Activation of Carbons -- 3.1.2 Carbon Activation Through Physical Method -- 3.1.3 Self-activation of Carbons -- 3.2 Pyrolysis Techniques -- 3.2.1 Effect of Temperature -- 3.2.2 Effect of Residence Time -- 3.2.3 Heating Rate Effect -- 3.2.4 Size of the Particle -- 3.3 Microwave-Assisted Technique -- 3.4 Carbonization by Hydrothermal -- 3.5 Ionothermal Carbonization -- 3.6 Template Method -- 4 Energy Storage Applications of Biomass Carbons -- 4.1 Supercapacitors -- 4.2 Li/Na-Ion Batteries -- 5 Conclusion -- Acknowledgements -- References -- 11 Green Synthesis of Nanomaterials via Electrochemical Method -- Abstract -- 1 Introduction -- 2 Green Synthesis -- 2.1 Application of Biology in Green Synthesis -- 2.2 Green Synthesis Based on the Application of Solvent -- 3 Computational Data and Analysis -- 4 Electrochemical Method -- 5 Electrodeposition Method -- 5.1 Experimental Setup for Electrodeposition -- 6 Research Work: Using Green Electrochemical Methods for Nanomaterials Synthesis -- 7 Conclusion -- References -- 12 Microwave-Irradiated Synthesis of Imidazo[1,2-a]pyridine Class of Bio-heterocycles: Green Avenues and Sustainable Developments -- Abstract -- 1 Introduction -- 2 Microwave-Assisted Synthesis of 2-arylimidazo[1,2-a]pyridines [Abbreviated as 2-Aryl-IPs]. -- 2.1 Synthesis of Fused Bicyclic Heteroaryl Boronates and Imidazopyridine-Quinazoline Hybrids Under MW-irradiations -- 2.2 MW-Irradiated Synthesis of IPs Using Multi-Component Strategy Under Neat Conditions. , 2.3 One-Pot, Three-Component Synthesis of 2-Phenyl-H-Imidazo[1,2-α]pyridine Under MW-Irradiations -- 2.4 Microwave-Assisted Amine-Triggered Benzannulation Strategy for the Preparation of 2,8-Diaryl-6-Aminoimidazo-[1,2-a]pyridines -- 2.5 MW-Assisted NaHCO3-catalyzed Synthesis of Imidazo[1,2-a]pyridines in PEG400 Media and Its Practical Application in the Synthesis of 2,3-Diaryl-IP Class of Bio-Heterocycles -- 2.6 MW-Irradiated, Ligand-Free, Palladium-Catalyzed, One-Pot 3-component Reaction for an Efficient Preparation of 2,3-Diarylimidazo[1,2-a]pyridines -- 2.7 MW-Assisted Water-PEG400-mediated Synthesis of 2-Phenyl-IP via Multi-Component Reaction (MCR) -- 2.8 Microwave-Irradiated Synthesis of Imidazo[1,2-a]pyridines Under Neat, Catalyst-Free Conditions -- 2.9 Green Synthesis of Imidazo[1,2-a]pyridines in H2O -- 2.10 Microwave-Assisted Neat Synthesis of Substituted 2-Arylimidazo[1,2-a]Pyridines -- 2.11 Microwave-Assisted Nano SiO2 Neat Synthesis of Substituted 2-Arylimidazo[1,2-a]pyridines -- 2.12 Microwave-Assisted NaHCO3-Catalyzed Synthesis of 2-phenyl-IPs -- 3 Microwave-Assisted Synthesis of 3-amino-2-arylimidazo[1,2-a]pyridines [3-amino-2-aryl-IPs] -- 3.1 Microwave-Irradiated Synthesis of 3-aminoimidazo[1,2-a]pyridines via Fluorous Multi-component Pathway -- 3.2 MW-Irradiated Synthetic Protocol for 3-aminoimidazo[1,2-a]pyridines via MCR Pathway -- 3.3 MW-Assisted Sequential Ugi/Strecker Reactions Involving 3-Center-4-Component and 3-Center-5-Component MCR Strategy -- 3.4 One-Pot, 4-component Cyclization/Suzuki Coupling Leading to the Rapid Formation of 2,6-Disubstituted-3-Amino-IPs Under Microwave Irradiations -- 3.5 ZnCl2-catalyzed MCR of 3-aminoimidazo[1,2-a]pyridines Using MW Conditions -- 3.6 Microwave-Promoted Preparation of N-(3-arylmethyl-2-oxo-2,3-dihydroimidazo[1,2-a]pyridin-3-Yl)Benzamides. , 3.7 MW-Assisted Multi-component Neat Synthesis of Benzimidazolyl-Imidazo[1,2-a]pyridines.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Photocatalysis. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (277 pages)
    Edition: 1st ed.
    ISBN: 9783030126193
    Series Statement: Environmental Chemistry for a Sustainable World Series ; v.30
    DDC: 541.395
    Language: English
    Note: Intro -- Preface -- Contents -- Contributors -- Chapter 1: Role of Nano-photocatalysis in Heavy Metal Detoxification -- 1.1 Introduction -- 1.2 Heavy Metals and Their Toxicological Effects -- 1.2.1 Cadmium -- 1.2.2 Chromium -- 1.2.3 Copper -- 1.2.4 Lead -- 1.2.5 Mercury -- 1.2.6 Nickel -- 1.2.7 Zinc -- 1.3 Overview of Photocatalysis -- 1.4 Mechanism of Photocatalysis -- 1.5 Types of Photocatalysis -- 1.5.1 Homogeneous Photocatalysis -- 1.5.2 Heterogeneous Photocatalysis -- 1.6 Overview and Mechanism of Nano-photocatalysis -- 1.7 Photocatalytic Nanoparticle Synthesis -- 1.7.1 Organic Synthesis -- 1.7.1.1 Plant Extracts Aqueous Solutions -- 1.7.1.2 Microorganisms -- 1.7.2 Chemical Synthesis -- 1.7.2.1 Sol-Gel Method -- 1.7.2.2 Hydrothermal Method -- 1.7.2.3 Polyol Synthesis -- 1.7.2.4 Precipitation Method -- 1.7.3 Physical Synthesis -- 1.7.3.1 Ball Milling -- 1.7.3.2 Melt Mixing -- 1.7.3.3 Physical Vapour Deposition (PVD) -- 1.7.3.4 Laser Ablation -- 1.7.3.5 Sputter Deposition -- 1.8 Mode of Operation on Nano-photocatalysis -- 1.9 Parameters Affecting the Photocatalytic Efficiency -- 1.9.1 Effect of pH of the Reaction Solution -- 1.9.2 Effect of Photocatalyst Concentration -- 1.9.3 Effect of Substrate Adsorption -- 1.9.4 Effect of Dissolved Oxygen -- 1.10 Application -- 1.10.1 Chromium -- 1.10.1.1 pH -- 1.10.1.2 Light Intensity -- 1.10.1.3 Photocatalyst Dosage -- 1.10.1.4 Presence of Organic Compounds -- 1.10.2 Mercury -- 1.10.3 Arsenic -- 1.10.4 Uranium -- 1.11 Disadvantages of Photocatalysis -- 1.12 Photocatalyst Modifications -- 1.12.1 Dye Sensitization -- 1.12.2 Ion Doping -- 1.12.3 Composite Semiconductor -- 1.13 Conclusion -- References -- Chapter 2: Solar Photocatalysis Applications to Antibiotic Degradation in Aquatic Systems -- 2.1 Introduction -- 2.2 Solar Photocatalysis Process. , 2.3 Solar Photocatalysis Treatment for Antibiotic Degradation -- 2.3.1 Trimethoprim -- 2.3.2 Sulfamethoxazole -- 2.3.3 Erythromycin -- 2.3.4 Ciprofloxacin -- 2.4 Conclusions -- References -- Chapter 3: Biomass-Based Photocatalysts for Environmental Applications -- 3.1 Introduction -- 3.2 Background of Biomass-Derived Carbon -- 3.2.1 Biochar -- 3.2.2 Activated Carbon (AC) -- 3.3 Synthesis Methods of Biomass-Derived Carbon -- 3.3.1 Pyrolysis -- 3.3.2 Hydrothermal Carbonization -- 3.3.3 Physical and Chemical Activation -- 3.4 Photocatalysts and Photocatalysis Reactions -- 3.5 Functionalized AC and Applications -- 3.5.1 Types of Functionalized AC -- 3.5.2 Functionalized AC Photocatalysts and Its Application -- 3.6 Future Challenges and Conclusions -- References -- Chapter 4: Application of Bismuth-Based Photocatalysts in Environmental Protection -- 4.1 Introduction -- 4.2 Photocatalytic Oxidation of Pharmaceuticals in Water -- 4.2.1 Tetracycline -- 4.2.2 Ciprofloxacin and Other Antibiotics -- 4.2.3 Carbamazepine -- 4.2.4 Ibuprofen and Diclofenac -- 4.2.5 Other Pharmaceuticals -- 4.3 Photocatalytic Oxidation of Industrial Micropollutants -- 4.3.1 Bisphenol A -- 4.3.2 Oxidation of Other Industrial Pollutants -- 4.4 Oxidation of the Indoor Air Pollutant NOx -- 4.5 Photocatalytic Reduction of Pollutants in Water and Air -- 4.5.1 Reduction of Cr(VI) in Water -- 4.5.2 Reduction of CO2 in Air -- 4.6 Water Splitting -- 4.7 Conclusions -- References -- Chapter 5: Phosphors-Based Photocatalysts for Wastewater Treatment -- 5.1 Introduction -- 5.2 Phosphor Materials: A Historical Background -- 5.3 Inorganic Phosphors in Photocatalysis -- 5.3.1 Types of Inorganic Phosphor Materials -- 5.3.2 Down-Conversion Phosphors in Photocatalysis -- 5.3.3 Up-Conversion Phosphors in Photocatalysis -- 5.3.4 Long-Persistent Phosphors in Photocatalysis. , 5.4 Organic Up-Conversion Phosphors in Photocatalysis -- References -- Chapter 6: Nanocarbons-Supported and Polymers-Supported Titanium Dioxide Nanostructures as Efficient Photocatalysts for Remedi... -- 6.1 Introduction -- 6.1.1 Heterogeneous Semiconductor Photocatalysis -- 6.1.2 Potential TiO2-Based Photocatalysts -- 6.1.3 Limitations of the Fine Powder Form of TiO2-Based Photocatalysts -- 6.1.3.1 Comparison of Synthesis Methods -- 6.1.3.2 Improvements in TiO2 Performance by Structural Change, Doping, and Hybridization -- 6.2 TiO2 Photocatalysts with Polymer-Based Hybrid Photocatalysts for Wastewater Treatment -- 6.2.1 Need for Immobilization of TiO2-Based Photocatalysts -- 6.2.1.1 Features of a Stable Substrate, and Available Substrates -- 6.2.1.2 Comparison of Polymeric Supports for Wastewater Treatment -- 6.3 TiO2 Photocatalysts Supported with Nanocarbons for Wastewater Treatment -- 6.3.1 TiO2-Functionalized Nanocarbon-Based Photocatalysts -- 6.3.1.1 Potential Photocatalytic Improvements with Carbon Nanostructures for Wastewater Treatment -- 6.4 Conclusions and Future Outlook -- References -- Chapter 7: Investigation in Sono-photocatalysis Process Using Doped Catalyst and Ferrite Nanoparticles for Wastewater Treatment -- 7.1 Introduction -- 7.2 Dependency of Catalytic Activity -- 7.2.1 Size-Dependent Catalytic Activity -- 7.2.2 Shape-Dependent Catalytic Effect -- 7.2.3 Interparticle Distance-Dependent Catalytic Effect -- 7.2.4 Support Interaction and Charge Transfer-Dependent Reactivity -- 7.3 Type of Nanoparticles -- 7.3.1 Non-metallic Nanoparticles -- 7.3.2 Metallic Nanoparticles -- 7.3.3 Semiconductor Nanoparticles -- 7.3.4 Ceramic Nanoparticles -- 7.3.5 Polymer Nanoparticles -- 7.3.6 Lipid-Based Nanoparticles -- 7.4 Types of Nanoparticles Based on Structure -- 7.5 Synthesis and Applications -- 7.5.1 Discussions -- 7.6 Synergetic Effect. , 7.7 Conclusion and Overview -- References -- Chapter 8: Magnetic-Based Photocatalyst for Antibacterial Application and Catalytic Performance -- 8.1 Introduction -- 8.2 Magnetic-Based Photocatalysts in Inactivation of the Microorganism -- 8.3 Factors Affecting the Photocatalytic Bacterial Inactivation -- 8.3.1 Effect of Magnetic-Based Photocatalyst Concentration and Light Intensity -- 8.3.2 Nature of Microorganism -- 8.3.3 Solution pH of Magnetic-Based Photocatalyst Suspension -- 8.3.4 Initial Bacterial Concentration -- 8.3.5 Physiological State of Bacteria -- 8.4 Proposed Mechanism for Bacteria Disinfection by the Magnetic-Based Photocatalyst -- 8.5 Using Magnetic-Based Catalyst in Photocatalytic Abatement of Organics -- 8.6 Photocatalysis for the Simultaneous Treatment of Bacteria and Organics -- 8.7 Conclusion and Future Prospects -- References -- Chapter 9: Antimicrobial Activities of Photocatalysts for Water Disinfection -- 9.1 Introduction -- 9.2 Mechanisms of Photocatalytic Disinfection -- 9.3 Pure and Modified Photocatalysts -- 9.4 Photocatalytic Films and Biofilms -- 9.5 Photocatalytic Composites and Nanocomposites -- 9.6 Materials with Antimicrobial Activity in the Absence of Light -- 9.7 Case Study: Application of Supported Photocatalysts in Disinfection of Whey-Processing Water -- 9.8 Final Considerations -- References -- Chapter 10: Medicinal Applications of Photocatalysts -- 10.1 Introduction -- 10.1.1 Background -- 10.2 Antifungal Activity -- 10.3 Virucidal Activity -- 10.4 Antimicrobial Activity -- 10.5 Anticancer Activity -- 10.6 Conclusion -- References -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Ion exchange. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (230 pages)
    Edition: 1st ed.
    ISBN: 9783030104306
    DDC: 541.3723
    Language: English
    Note: Intro -- Preface -- Contents -- 1 Green Approach: Microbes for Removal of Dyes and Metals via Ion Binding -- Abstract -- 1.1 Introduction -- 1.2 Pollutants in the Environment -- 1.2.1 Toxic Metals -- 1.2.2 Triphenylmethane Dyes -- 1.3 Bioremediation Approaches in Removing Pollutants -- 1.3.1 Non-microbial Strategies -- 1.3.2 Microbial-Based Strategies -- 1.4 Mechanisms for Removal of Pollutant Ions -- 1.4.1 Mechanisms for Removal of Metal Ions -- 1.4.2 Mechanisms for Removal of Dyes -- 1.5 Innovations in the Removal of Pollutant Ions -- 1.6 Conclusions and Future Prospects -- Acknowledgements -- References -- 2 Removal of Heavy Metal from Wastewater Using Ion Exchange Membranes -- Abstract -- 2.1 Introduction -- 2.2 Heavy Metal -- 2.2.1 Chromium -- 2.2.2 Nickel -- 2.2.3 Copper -- 2.2.4 Zinc -- 2.2.5 Cadmium -- 2.2.6 Mercury -- 2.2.7 Lead -- 2.3 Physical Treatment Methods -- 2.3.1 Ultrafiltration -- 2.3.2 Nanofiltration -- 2.3.3 Reverse Osmosis -- 2.3.4 Forward Osmosis -- 2.3.5 Adsorption -- 2.4 Chemical Treatment Methods -- 2.4.1 Electrodialysis Method -- 2.4.2 Fuel Cell Method -- 2.5 Remaining Challenges and Perspectives -- 2.6 Conclusion -- Acknowledgements -- References -- 3 Separation and Purification of Uncharged Molecules -- Abstract -- 3.1 Introduction -- 3.2 Separation and Purification of Vitamin B12 -- 3.2.1 Downstream Processing of Vitamin B12 for Measurement -- 3.3 Separation and Purification of Haemoglobin -- 3.4 Separation and Purification of Uncharged Dyes -- 3.4.1 Purification and Separation of Dyes -- 3.5 Conclusion -- References -- 4 Aluminosilicate Inorganic Polymers (Geopolymers): Emerging Ion Exchangers for Removal of Metal Ions -- Abstract -- 4.1 Introduction -- 4.2 Methodology and Calculations -- 4.2.1 Terminology: Ion Exchange or Adsorption -- 4.2.2 Evidence for Ion Exchange. , 4.2.3 Modeling of Adsorption of Metal Ions on Geopolymers -- 4.2.4 Geopolymer Preparation -- 4.2.5 Washing of the Geopolymeric Adsorbent -- 4.2.6 Comparison Between Geopolymers and Zeolites -- 4.2.7 Geopolymers as Ion Exchangers -- 4.2.7.1 Geopolymers as Ion Exchangers for Alkali Metal Ions -- 4.2.7.2 Geopolymers as Ion Exchangers for Ammonium Ion -- 4.2.7.3 Geopolymers as Ion Exchangers for Alkaline Earth Metals -- 4.2.7.4 Geopolymers as Ion Exchangers for Heavy Metals -- Metakaolin-Based Geopolymers -- Fly Ash-Based Geopolymers -- Zeolite-Based Geopolymers -- 4.2.7.5 Geopolymers as Ion Exchangers/Adsorbents for Cationic Organic Dyes -- 4.2.8 Comparison of Geopolymers with Zeolites -- 4.2.8.1 Synthesis Conditions -- 4.2.8.2 Crystallinity -- 4.2.8.3 Surface Area and Porosity -- 4.2.8.4 Cation Exchange Capacity -- 4.2.8.5 Selectivity for Metal Ions -- 4.2.8.6 Stability in Acidic Solutions -- 4.2.8.7 Thermal Stability -- 4.2.8.8 Mechanical Strength -- 4.2.8.9 Regeneration -- 4.2.9 Stabilization/Solidification/Encapsulation of Ion Exchangers in Geopolymers -- 4.3 Concluding Remarks -- References -- 5 Microwave-Assisted Hydrothermal Synthesis of Agglomerated Spherical Zirconium Phosphate for Removal of Cs+ and Sr2+ Ions from Aqueous System -- Abstract -- 5.1 Introduction -- 5.2 Materials and Methods -- 5.2.1 Preparation of Agglomerated Spherical Zirconium Phosphate -- 5.2.2 Characterization -- 5.2.3 Ion Exchange Properties -- 5.2.4 Elution Behaviour -- 5.2.5 Distribution Studies -- 5.3 Results and Discussion -- 5.3.1 Fourier-Transform Infrared (FT-IR) Characterization -- 5.3.2 Powder X-ray Diffraction Studies -- 5.3.3 Scanning Electron Microscopy (SEM) and Energy Dispersive (EDS) Characterization -- 5.3.4 Zeta and Surface Area Analysis -- 5.3.5 Ion Exchange Characteristics -- 5.3.6 Mechanism of Sr2+ Interaction with Zirconium Phosphate -- 5.4 Conclusion. , Acknowledgements -- References -- 6 Metal Hexacyanoferrates: Ion Insertion (or Exchange) Capabilities -- Abstract -- 6.1 Introduction -- 6.2 Ion Exchange -- 6.2.1 Ion Exchange in MHCF at Work: Potentiometric Ion Sensors -- 6.2.2 An Ion Exchange-Based Approach for the Recovery of Metal Ions: The Case of Cesium and Thallium -- 6.2.3 Electrochemically Driven Ion Exchange -- 6.2.4 Reversible Ion Insertion in Battery Systems -- 6.3 Conclusion -- References -- 7 Biosorbents and Composite Cation Exchanger for the Treatment of Heavy Metals -- Abstract -- 7.1 Introduction -- 7.2 Agro-Based Biosorbents for Heavy Metal Removal -- 7.3 Biopolymers -- 7.3.1 Functional Groups -- 7.3.2 Cellulose -- 7.3.3 Chitosan -- 7.3.4 Nanofiber Membranes and Packed-Bed Adsorbers -- 7.4 Composite Ion Exchangers -- 7.5 Conclusion and Future Outlook -- References -- 8 Rare Earth Elements-Separation Methods Yesterday and Today -- Abstract -- 8.1 Introduction -- 8.2 Rare Earth Elements -- 8.2.1 General Characteristics -- 8.2.2 The Occurrence of Rare Earth Elements -- 8.2.3 Physicochemical Properties of Rare Earth Elements -- 8.2.4 Application of Rare Earth Metals -- 8.2.5 Production and Consumption of Rare Earth Elements in the World -- 8.3 Rare Earth Element Recovery from Nickel-Metal Hydride Batteries -- 8.4 Rare Earth Element Recovery from Permanent Magnets -- 8.5 Separation of High-Purity Rare Earth Elements -- 8.5.1 Separations of Rare Earth Elements of High Purity Using Cation Exchangers -- 8.5.2 Separations of Rare Earth Elements of High Purity Using Anion Exchangers -- 8.5.3 Separations of Rare Earth Elements of High Purity Using Chelating Ion Exchangers -- 8.6 Current Technologies -- 8.7 Conclusions -- References -- 9 Sequestration of Heavy Metals from Industrial Wastewater Using Composite Ion Exchangers -- Abstract -- 9.1 Introduction -- 9.2 Ion-Exchange Materials. , 9.2.1 Organic Materials -- 9.2.2 Inorganic Materials -- 9.2.3 Composite Materials -- 9.2.3.1 Hybrid Materials -- 9.2.3.2 Nanocomposite -- 9.3 Mechanism of Ion-Exchange Process -- 9.4 Conclusion -- Acknowledgements -- References -- 10 Applications of Organic Ion Exchange Resins in Water Treatment -- Abstract -- 10.1 Introduction -- 10.2 Removal of Heavy Metals -- 10.3 Removal of Organics -- 10.3.1 Natural Organic Matter (NOM) -- 10.3.2 Disinfection by-Products (DBPs) -- 10.3.3 Surfactants -- 10.3.4 Pharmaceuticals -- 10.3.5 Dyes -- 10.3.6 Small Organic Matter -- 10.4 Desalination -- 10.5 Boron Removal -- 10.6 Removal of Anions -- 10.7 Removal of Cations -- 10.7.1 Hardness -- 10.7.2 Ammonium -- 10.8 Conclusions -- References.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Dordrecht :Springer Netherlands,
    Keywords: Chromatographic analysis. ; Chemistry, Analytic -- Technique. ; Sustainable development. ; Electronic books.
    Description / Table of Contents: This book examines counter-current, ion size exclusion, supercritical fluids, high-performance thin layers, and gas and size exclusion chromatographic techniques used to separate and purify organic and inorganic analytes. Includes green prep methods and more.
    Type of Medium: Online Resource
    Pages: 1 online resource (220 pages)
    Edition: 1st ed.
    ISBN: 9789400777354
    DDC: 543.8
    Language: English
    Note: Intro -- Preface -- Acknowledgements -- Contents -- Contributors -- Chapter-1 -- Saving Solvents in Chromatographic Purifications: The Counter-Current Chromatography Technique -- 1.1 Introduction -- 1.2 CCC Theory -- 1.2.1 High Loadability -- 1.2.2 Scale up Capability -- 1.3 Instrumentation -- 1.3.1 Hydrostatic and Hydrodynamic Instruments -- 1.3.2 Liquid Systems -- 1.4 Counter Current Chromatography, a Green Process -- 1.4.1 Saving Solvents -- 1.4.2 Improving Process Parameters -- 1.4.3 Injecting Crude Samples -- 1.4.4 Greener Solvents -- 1.5 Counter Current Chromatography, a Tool for Green Chemistry Development -- 1.5.1 Natural Products -- 1.5.2 Solute Partition Coefficient Determination -- 1.6 Conclusion -- References -- Chapter-2 -- Ion Size Exclusion Chromatohtaphy on Hypercrosslinked Polystyrene Sorbents as a Green Technology of Separating Mineral Elecyrolites -- 2.1 Introduction -- 2.2 Nanoporous Hypercrosslinked Polystyrene Sorbents -- 2.3 Brief Description of Chromatographic Experiments -- 2.4 Dimensions of Hydrated Ions -- 2.5 Separation of Electrolytes on Nanoporous Hypercrosslinked Sorbents -- 2.6 Basic Features of Size Exclusion Chromatography -- 2.7 Conception of "Ideal Separation Process" -- 2.8 Selectivity of Electrolyte Separation Process -- 2.9 Influence of the Electrolyte Concentration on the Selectivity of Separat -- 2.10 "Acid Retardation", "Base Retardation" and "Salt Retardation" Phenomena -- 2.11 Other Convincing Proofs of Separating Electrolytes via Exclusion Mechanism -- 2.12 Do we Really Need Sorbent Functional Groups to Separate Electrolytes? -- 2.13 Productivity of the Ion Size Exclusion Process -- 2.14 Ion Size Exclusion-Green Technology -- 2.15 Conclusion -- References -- Chapter-3 -- Supercritical Fluid Chromatography: A Green Approach for Separation and Purification of Organic and Inorganic Analytes. , 3.1 Introduction to Green Chemistry and Supercritical Fluid Chromatography -- 3.2 Super Critical Fluids -- 3.2.1 Supercritical Fluid Extraction (SFE) -- 3.3 Supercritical Fluid Chromatography (SFC): An Overview -- 3.3.1 History of Development of Supercritical Fluid Chromatography -- 3.3.2 Instrumentation -- 3.3.2.1 Advantages and Disadvantages of Supercritical Fluid Chromatography -- 3.3.3 Properties of SFC compared to GC and HPLC -- 3.4 Industrial Applications of SCFs and SFCs -- 3.5 Conclusion -- References -- Chapter-4 -- High Performance Thin-Layer Chromatography -- 4.1 Introduction -- 4.2 High Performance Thin-Layer Chromatography -- 4.3 Sample Preparation in HPTLC -- 4.4 Green Separation Modalities in HPTLC -- 4.4.1 "Three R" Philosophy-Replacement of Toxic Solvents with Environmental Friendly Mobi -- 4.4.1.1 Reversed-Phase Chromatography -- 4.4.1.2 Hydrophilic Interaction Chromatography (HILIC) in HPTLC -- 4.4.1.3 Salting-Out Chromatography in HPTLC -- 4.5 Conclusion -- References -- Chapter-5 -- Green Techniques in Gas Chromatography -- 5.1 Introduction -- 5.2 Sample Preparation -- 5.2.1 Direct Methods Without Sample Preparation -- 5.2.2 Solventless Sample Preparation Techniques -- 5.2.2.1 Solid Phase Extraction -- 5.2.2.2 Vapor-Phase Extraction -- 5.2.2.3 Thermal Desorption (TD)/Thermal Extraction (TE) -- 5.2.2.4 Membrane Extraction -- 5.2.3 Sample Preparation Using Environmentally Friendly Solvents -- 5.2.3.1 Supercritical Fluid Extraction (SFE) -- 5.2.3.2 Subcritical Water Extraction (SWE) -- 5.2.3.3 Ionic Liquids (ILs) -- 5.2.3.4 Cloud-Point Extraction -- 5.2.4 Assisted Solvent Extraction -- 5.3 Column Considerations for Green Gas Chromatography -- 5.4 Carrier Gas Considerations for Green Gas Chromatography -- 5.5 Coupling GC with Other Analytical Tools -- 5.6 On-Site Analysis. , 5.7 Conclusion -- References -- Chapter-6 -- Preparation and Purification of Garlic-Derived Organosulfur Compound Allicin by Green Methodologies -- 6.1 Introduction -- 6.2 Green RP-HPLC Purification of the Allicin -- 6.3 Characterization of the Allicin by Green Methodologies -- 6.4 Allicin in Different Garlic Extract by Green RP-HPLC -- 6.5 Allicin Green Chemical Synthesis -- 6.6 Stability of Allicin -- 6.7 Conclusions -- References -- Chapter-7 -- Green Sample Preparation Focusing on Organic Analytes in Complex Matrices -- 7.1 Introduction -- 7.1.1 Trends in Green Analytical Chemistry -- 7.1.2 Green Techniques for Sample Preparation -- 7.1.2.1 Reduction and Solvent Replacement -- Supercritical Fluid Extraction -- Membranes -- 7.1.2.2 Solvent Elimination -- Solid Phase Extraction (SPE) -- Matrix Solid-Phase Dispersion (MSPD) -- Sorptive Extraction Techniques -- Solid Phase Microextraction (SPME) -- Stir-Bar Sorptive Extraction -- 7.2 Conclusions -- References -- Chapter-8 -- Studies Regarding the Optimization of the Solvent Consumption in the Determination of Organochlor -- 8.1 Introduction -- 8.2 Materials and Methods -- 8.2.1 Materials -- 8.2.2 Methods -- 8.3 Results -- 8.4 Discussions -- 8.4.1 TRM1 -- 8.4.2 TRM2 -- 8.5 Conclusions -- References -- Chapter-9 -- Size Exclusion Chromatography a Useful Technique For Speciation Analysis of Polydimethylsiloxanes -- 9.1 Introduction to SEC -- 9.2 SEC Retention Mechanisms -- 9.2.1 Ideal Size Exclusion Mechanism -- 9.2.2 Non-Ideal Size Exclusion Mechanism -- 9.3 The Stationary Phase in SEC -- 9.4 The Mobile Phase in SEC -- 9.5 Analytical Problems -- 9.6 Methods for Column Calibration -- 9.7 Applications of SEC Biomedical and Pharmaceutical -- 9.7.1 SEC as a Useful Technique for Linear Polydimethylsiloxanes Speciation Analysis. , 9.8 Methodology for Linear Polydimethylsiloxanes Speciation Analysis -- 9.8.1 Mobile Phase Selection -- 9.8.2 Stationary Phase Selection -- 9.8.3 Column Conditions -- 9.8.4 Column Calibration -- 9.8.5 Separation of Polydimethylsiloxanes -- 9.9 Conclusions -- References -- Erratum -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Singapore :Springer Singapore Pte. Limited,
    Keywords: Botanical chemistry. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (318 pages)
    Edition: 1st ed.
    ISBN: 9789811566073
    Series Statement: Environmental and Microbial Biotechnology Series
    DDC: 579
    Language: English
    Note: Intro -- Preface -- Contents -- 1: Application of Microbial Biosurfactants in the Food Industry -- 1.1 Surfactants in the Food Industry -- 1.1.1 Food Additives -- 1.1.2 Biosurfactants as Food Preservatives -- 1.1.2.1 Emulsifying Agents -- 1.1.2.2 Antibiofilm Agents -- 1.1.2.3 Antimicrobial Agents -- 1.1.2.4 Antioxidant Agents -- 1.1.3 Industrial Prospects -- References -- 2: Microbial Biosurfactants for Contamination of Food Processing -- 2.1 Introduction -- 2.1.1 Food Contamination -- 2.1.2 Contamination in Food Processing -- 2.2 Microbial Biosurfactants Use in Food Processing -- 2.2.1 Glycolipids -- 2.2.2 Lipopeptides -- 2.3 Application of Microbial Surfactants in Food Processing -- 2.3.1 Biofilm Control -- 2.3.2 Food Preservatives -- 2.4 Concluding Remarks -- References -- 3: Antioxidant Biosurfactants -- 3.1 Introduction -- 3.2 Sources of Biosurfactants -- 3.2.1 Plant-Based Biosurfactants -- 3.2.1.1 Saponins -- Structure, Properties, and Types of Saponins -- Saponins as a Biosurfactants -- 3.2.2 Microbe-Based Biosurfactants -- 3.2.2.1 Types of Microbial Surfactants -- Glycolipids -- Rhamnolipids -- Sophorolipids -- Trehalolipids -- Succinoyl Trehalolipids -- Cellobiose Lipids -- Mannosylerythritol Lipids -- Xylolipids -- Mannose Lipids -- Lipopeptides or Lipoprotein -- Bacillus-Related Lipopeptides -- Surfactin -- Fengycin -- Iturin -- Kurstakins -- Lichenysins -- Pseudomonas-Related Lipopeptides -- Actinomycetes-Related lipopeptides -- Fungal-Related Lipopeptides -- Phospholipids, Fatty Acids (Mycolic Acids), and Neutral Lipids -- Polymeric Surfactants -- Particulate Surfactants -- 3.3 Factors Affecting Biosurfactant Production -- 3.3.1 pH and Temperature -- 3.3.2 Aeration and Agitation -- 3.3.3 Effect of Salt Salinity -- 3.3.4 Optimization of Cultivation Medium -- 3.3.4.1 Effect of Carbon Source -- 3.3.4.2 Effect of Nitrogen Source. , 3.3.4.3 Effect of Carbon to Nitrogen (C/N) Ratio -- 3.4 Screening of Microorganisms for Biosurfactant Production -- 3.4.1 Oil Spreading Assay -- 3.4.2 Drop Collapse Assay -- 3.4.3 Blood Agar Method/Hemolysis Assay -- 3.4.4 Hydrocarbon Overlay Agar -- 3.4.5 Bacterial Adhesion to Hydrocarbon (BATH) Assay -- 3.4.6 CTAB Agar Plate Method/Blue Agar Assay -- 3.4.7 Phenol: Sulfuric Acid Method -- 3.4.8 Microplate Assay -- 3.4.9 Penetration Assay -- 3.4.10 Surface/Interface Activity -- 3.4.11 Emulsification Activity -- 3.5 Antioxidant Properties of Biosurfactant -- 3.6 Conclusion -- References -- 4: Classification and Production of Microbial Surfactants -- 4.1 Introduction -- 4.1.1 Global Biosurfactant Market -- 4.2 Types of Biosurfactants -- 4.2.1 Glycolipids -- 4.2.1.1 Rhamnolipids -- 4.2.1.2 Sophorolipids -- 4.2.1.3 Trehalolipids -- 4.2.2 Lipoproteins and Lipopeptides -- 4.2.3 Fatty Acids -- 4.2.4 Phospholipids -- 4.2.5 Polymeric Biosurfactants -- 4.3 Factors Influencing Biosurfactant Productivity -- 4.3.1 Nutritional Factors -- 4.3.1.1 Carbon Source -- 4.3.1.2 Low-Cost and Waste Substrates -- 4.3.1.3 Nitrogen Source -- 4.3.1.4 Minerals -- 4.3.2 Environmental Factors -- 4.3.3 Cultivation Strategy -- 4.3.3.1 Solid-State Fermentation (SSF) -- 4.3.3.2 Submerged Fermentations (SmF) -- References -- 5: Microbial Biosurfactants and Their Potential Applications: An Overview -- 5.1 Introduction -- 5.2 Classes of Biosurfactants -- 5.2.1 Glycolipids -- 5.2.2 Lipopolysaccharides -- 5.2.3 Lipopeptides and Lipoproteins -- 5.2.4 Phospholipids -- 5.2.5 Fatty Acids -- 5.3 Microbial Production of Biosurfactants -- 5.4 Genes Involved in the Production of Microbial Biosurfactants -- 5.5 Applications -- 5.5.1 In Petroleum Industry -- 5.5.1.1 Mechanism of MEOR -- 5.5.2 Biosurfactant-Mediated Bioremediation -- 5.5.3 In Food Industry -- 5.5.4 In Agriculture. , 5.5.5 In Cosmetics -- 5.5.6 Biosurfactant in Nanotechnology -- 5.5.7 Biosurfactants as Drug Delivery Agents -- 5.5.8 Antimicrobial Activity of Biosurfactants -- 5.5.9 Biosurfactant as Anti-Adhesive Agent -- 5.5.10 In Fabric Washing -- 5.6 Conclusions -- References -- 6: Biodegradation of Hydrophobic Polycyclic Aromatic Hydrocarbons -- 6.1 Introduction -- 6.2 Health Related to PAHs -- 6.2.1 Consequences of Consistent of PAH Exposure by Human -- 6.2.2 Problems Associated with PAHs Via Cytochrome P450 -- 6.3 Biodegradation of PAHs -- 6.3.1 Challenges of Limited Aqueous Solubility in Water -- 6.3.2 Biodegradation Pathway of PAHs -- 6.3.2.1 Naphthalene -- 6.3.2.2 Pyrene -- 6.3.2.3 Fluoranthene -- 6.4 Biosurfactants -- 6.4.1 Biosurfactants -- 6.4.1.1 Glycolipid -- Rhamnolipids -- Cellobiose Lipids -- Sophorolipids -- Trehalolipids -- Mannosylerythritol Lipid -- 6.4.1.2 Lipopeptides -- 6.4.1.3 Phospholipids -- 6.4.2 Polymeric Biosurfactants -- 6.5 Enhanced Biodegradation of PAHs by Biosurfactant -- 6.5.1 Biodegradation in Micelles -- 6.5.2 Biosurfactant Acting as Bioemulsifier -- 6.6 Conclusions -- References -- 7: Surfactin: A Biosurfactant Against Breast Cancer -- 7.1 Introduction -- 7.2 Biosurfactants and Its Types -- 7.2.1 Glycolipids -- 7.2.1.1 Rhamnolipids -- 7.2.1.2 Sophorolipids -- 7.2.1.3 Trehalolipids -- 7.2.2 Lipopeptides -- 7.2.3 Fatty Acids -- 7.2.4 Phospholipids -- 7.2.5 Polymeric Biosurfactant -- 7.3 Surfactin: Structure, Membrane Interaction, Biosynthesis, and Regulation -- 7.3.1 Structure -- 7.3.2 Membrane Interaction -- 7.3.3 Biosynthesis -- 7.3.4 Regulation -- 7.4 Surfactin and Breast Cancer -- 7.5 Conclusion -- References -- 8: Anti-Cancer Biosurfactants -- 8.1 Introduction -- 8.2 Biosurfactants Classification and Structure -- 8.2.1 Mannosylerythritol Lipids (MELs) -- 8.2.2 Succinoyl Trehalose Lipids (STLs) -- 8.2.3 Sophorolipids. , 8.2.4 Rhamnolipids (RLs) -- 8.2.5 Myrmekiosides -- 8.2.6 Cyclic Lipopeptides (CLPs) -- 8.2.6.1 Amphisin, Tolaasin, and Syringomycin CLPs -- 8.2.6.2 Iturin and fengycin CLPs -- 8.2.6.3 Surfactin CLP -- 8.2.7 Rakicidns and Apratoxins -- 8.2.8 Serrawettins -- 8.2.9 Monoolein -- 8.2.10 Fellutamides -- 8.3 Biosurfactants Production -- 8.3.1 Factors Involved in Biosurfactants Production -- 8.3.1.1 Source of Carbon -- 8.3.1.2 Source of Nitrogen -- 8.3.1.3 Effect of Ions -- 8.3.1.4 Physical Factors -- 8.4 Anti-Cancer Activity of Biosurfactants -- 8.4.1 Breast Cancer -- 8.4.2 Lung Cancer -- 8.4.3 Leukemia -- 8.4.4 Melanoma -- 8.4.5 Colon Cancer -- 8.5 Biosurfactants as Drug Delivery System (DDS) -- 8.5.1 Liposomes -- 8.5.2 Niosomes -- 8.5.3 Nanoparticles -- 8.6 Conclusions and Future Challenges -- References -- 9: Biosurfactants for Oil Pollution Remediation -- 9.1 Introduction -- 9.2 Oil Pollution and Its Remediation -- 9.2.1 Oil Pollution -- 9.2.2 Oil Remediation in Polluted Environments -- 9.3 Biosurfactants -- 9.3.1 Synthesis of Biosurfactants -- 9.3.2 Biosurfactant Role in Oil Degradation -- 9.4 Application of Biosurfactants Used for Oil Remediation -- 9.4.1 Oil-Polluted Soil Bioremediation -- 9.4.2 Bioremediation of Marine Oil Spills and Petroleum Contamination -- 9.4.3 Cleaning of Oil Tanks and Pipelines -- 9.4.4 Bioremediation of Heavy Metals and Toxic Pollutants -- 9.5 Conclusion -- References -- 10: Potential Applications of Anti-Adhesive Biosurfactants -- 10.1 Introduction -- 10.2 Biosurfactants That Display Anti-Adhesive Activity -- 10.3 Biofilms and the Adhesion Process: Mechanisms and Effects -- 10.4 Applications of Biosurfactants as Anti-Adhesive Agents -- 10.4.1 Anti-Adhesive Applications in the Biomedical Field -- 10.4.2 Anti-Adhesive Applications in the Food Industry Surfaces -- 10.5 Future Trends and Conclusions -- References. , 11: Applications of Biosurfactant for Microbial Bioenergy/Value-Added Bio-Metabolite Recovery from Waste Activated Sludge -- 11.1 Introduction -- 11.2 Applications of Surfactants for Value-Added Bio-Metabolites Recovery from WAS -- 11.3 Applications of Surfactants for Energy Recovery from WAS -- 11.4 Applications of Surfactants for Refractory Organic Decontamination from WAS -- 11.4.1 PAHs Decontamination -- 11.4.2 Dye Decontamination -- 11.4.3 PCB Decontamination -- 11.5 Applications of Surfactants for WAS Dewatering -- 11.6 Applications of Surfactants for Heavy Metal Removal from WAS -- 11.7 State-of-the-Art Processes to Promote Organics Biotransformation from WAS -- 11.7.1 Co-Pretreatment -- 11.7.2 Interfacing AD with Bioelectrochemical Systems -- 11.7.3 Optimizing Process Conditions -- 11.8 Conclusion -- References -- 12: Application of Microbial Biosurfactants in the Pharmaceutical Industry -- 12.1 Introduction -- 12.2 Mechanism of Interaction of Biosurfactants -- 12.3 Physiochemical Properties -- 12.3.1 Surface Tension -- 12.3.2 Biosurfactant and Self-Assembly -- 12.3.3 Emulsification Activity -- 12.4 Application of Biosurfactants in Pharmaceutical Industry -- 12.4.1 Biosurfactant as an Antitumor/AntiCancer Agent -- 12.4.2 Biosurfactants as Drug Delivery Agents -- 12.4.3 Wound Healing and Dermatological Applications -- 12.4.4 Potential Antimicrobial Application -- 12.4.5 Other Applications in the Pharmaceutical Field -- 12.5 Applications of Surfactin in Pharmaceutical Industry -- 12.6 Concluding Remarks -- References -- 13: Antibacterial Biosurfactants -- 13.1 Introduction -- 13.2 Glycolipids -- 13.2.1 Rhamnolipids -- 13.2.2 Sophorolipids -- 13.2.3 Trehalose Lipids -- 13.3 Lipopeptides -- 13.4 Phospholipids -- 13.5 Antibacterial Activity -- 13.6 Polymeric Surfactants -- 13.7 Fatty Acids -- 13.7.1 Bio-Sources of Fatty Acids. , 13.7.2 Role of Fatty Acids as Antimicrobials.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Renewable energy sources. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (354 pages)
    Edition: 1st ed.
    ISBN: 9783030728779
    Series Statement: Advances in Science, Technology and Innovation Series
    DDC: 628.532
    Language: English
    Note: Intro -- Contents -- 1 Chemical Valorization of CO2 -- Abstract -- 1 Introduction -- 2 CO2-Derived Fuels and Chemicals -- 2.1 Methane -- 2.2 Methanol -- 2.3 Dimethyl Ether -- 2.4 Formic Acid -- 2.5 Ethanol -- 2.6 CO2-Fischer-Tropsch Liquid Fuels -- 2.7 Carbon Monoxide-Syngas -- 3 CO2 Chemically Derived Materials -- 3.1 Polymers -- 3.2 CO2-Derived Building Materials -- 4 Conclusions -- References -- 2 Progress in Catalysts for CO2 Reforming -- Abstract -- 1 Introduction -- 2 Technologies for Capturing and Storing Carbon Dioxide -- 3 Technologies for Using Carbon Dioxide -- 4 Methane Dry Reforming Process -- 4.1 Progress in Catalysts for Methane Dry Reforming (1928-1989) -- 4.2 Progress in Catalysts for Methane Dry Reforming (1990-1999) -- 4.3 Progress in Catalysts for Methane Dry Reforming (2000-2009) -- 4.4 Progress in Catalysts for Methane Dry Reforming (2010-2019) -- 4.5 Current Status in the Catalysts for Methane Dry Reforming -- 5 Dry Reforming of Other Compounds -- 6 Use of Steam or Oxygen in Dry Reforming of Methane and Other Compounds -- 7 Solid Oxide Fuel Cells Fueled with Biogas -- 8 Commercialization of Dry Reforming Process -- 9 Conclusions -- References -- 3 Fuel Generation from CO2 -- Abstract -- 1 Introduction -- 2 Approaches for Directly Converting CO2 to Fuels -- 2.1 Pure CO2 Decomposition Technology -- 2.2 Reagent-Based CO2 Conversion Technology -- 2.2.1 Dry Deformation of Methane Technology -- 2.2.2 Catalytic Hydrogenation of CO2 -- 3 Biological CO2 Fixation for Fuels -- 3.1 Thermochemical Conversion -- 3.1.1 Torrefaction -- 3.1.2 Pyrolysis -- 3.1.3 Thermochemical Liquefaction -- 3.1.4 Gasification -- 3.1.5 Direct Combustion -- 3.2 Biochemical Conversion -- 3.2.1 Biodiesel -- 3.2.2 Bioethanol -- 3.2.3 Biomethane -- 3.2.4 Biohydrogen -- 3.2.5 Bioelectricity -- 3.2.6 Volatile Organic Compounds. , 4 Conclusion and Future Perspectives -- References -- 4 Thermodynamics of CO2 Conversion -- Abstract -- 1 Introduction -- 2 Carbon Dioxide Capture -- 3 Carbon Dioxide Utilisations -- 4 Thermodynamic Considerations -- 5 Thermodynamics of CO2 -- 5.1 The Thermodynamic Attainable Region (AR) -- 5.2 Using Hess's Law to Transform the Extents to G-H AR @ 25˚C -- 5.3 Increasing Temperature on G-H AR -- 6 Conclusion -- Acknowledgements -- References -- 5 Enzymatic CO2 Conversion -- Abstract -- 1 Introduction -- 1.1 CO2 as a Greenhouse Gas -- 1.2 Carbon Capture, Storage, and Utilization -- 1.3 CO2 as a Chemical Feedstock -- 1.4 CO2 Conversion with Enzymes -- 2 Natural Conversion of CO2 in Cells -- 3 Enzymatic Conversion of CO2 in Cells -- 3.1 Conversion of CO2 by a Single Enzyme (in vitro) -- 3.1.1 Formate Dehydrogenase -- 3.1.2 Carbonic Anhydrase -- 3.1.3 Carbon Monoxide Dehydrogenase -- 3.1.4 Ribulose-1,5-bisphosphate Carboxylase/Oxygenase (RuBisCO) -- 3.2 Conversion of CO2 by a Multi-Enzyme Cascade in vitro -- 3.3 Other Ways (Photocatalytic CO2 Methanation) -- 4 Industrial Applications -- 4.1 Alcohols -- 4.2 Organic Acids -- 4.3 Terpenoids -- 4.4 Fatty Acids -- 4.5 Polyhydroxyalkanoates -- 4.6 Calcium Carbonate -- 5 Summary and Future Prospects -- References -- 6 Electrochemical CO2 Conversion -- Abstract -- 1 Introduction -- 2 Electrochemical CO2 Conversion -- 2.1 Fundamentals of the Process -- 2.2 Variants of Electrochemical Conversion of CO2 -- 2.2.1 Aqueous Electrolytes -- 2.2.2 Non-Aqueous Electrolytes -- 2.2.3 Solid Oxide Electrolytes -- 2.2.4 Molten Salt Electrolytes -- 3 Electrochemical CO2 Conversion from Molten Salts -- 3.1 Present State of Electrochemical Reduction of CO2in Molten Salts for the Production of Solid-Phase Carbonaceous Nanomaterials -- 3.2 Direct Electrochemical Reduction of CO2 in Chloride Melts. , 3.3 Indirect Electrochemical Reduction of CO2 in Molten Salts -- 3.4 The Mechanisms of Electrode Reactions Occurring at the Cathode and Anode -- 3.5 Prospects for CO2 Conversion in Molten Salts -- 4 Conclusions -- References -- 7 Supercritical Carbon Dioxide Mediated Organic Transformations -- Abstract -- 1 Introduction -- 2 Applications of Supercritical Carbon Dioxide -- 2.1 Hydrogenation Reactions -- 2.2 Asymmetric Hydrogenation Reactions -- 2.3 Diels-Alder Reaction -- 2.4 Coupling Reaction -- 2.5 Oxidation Reaction -- 2.6 Baeyer-Villiger Oxidation Reaction -- 2.7 Iodination Reaction -- 2.8 Polymerization Reaction -- 2.9 Carbonylation Reaction -- 2.9.1 Acetalization Reaction -- 2.9.2 Olefin Metathesis Reaction -- 2.9.3 Synthesis of heterocycles -- Synthesis of α-alkylidene Cyclic Carbonates -- Synthesis of 4-Methyleneoxazolidin-2-Ones -- Synthesis of 5-Alkylidene-1, 3-Oxazolidin-2-Ones -- Synthesis of 6-Phenyl-3a, 4-Dihydro-1H-Cyclopenta[C]furan-5(3H)-One -- Synthesis of 3, 4, 5, 6-Tetraethyl-2H-Pyran-2-One -- 3 Conclusions -- Acknowledgements -- References -- 8 Theoretical Approaches to CO2 Transformations -- Abstract -- 1 Carbon Dioxide Properties -- 2 CO2 Transformation as an Undeniable Necessity -- 3 CO2 Activation -- 3.1 Methodologies of CO2 Activation -- 4 Theoretical Insight of CO2 Transformation -- 4.1 The Theoretical Approach in CO2 Conversion to Value-Added Chemicals -- 4.1.1 Carbon Monoxide -- 4.1.2 Methane -- 4.1.3 Methanol -- 4.1.4 Formic Acid -- 4.1.5 Heterocycles -- Cyclic Carbonates -- Cyclic Carbamate -- Quiznazoline-2,4(1H,3H)-Dione -- 4.1.6 Summary and Outlook -- 5 Theoretical Designing of Novel Catalysts Based on DFT Studies -- 5.1 Theoretical Designing: Problems and Opportunities -- 6 Conclusion -- References -- 9 Carbon Dioxide Conversion Methods -- Abstract -- 1 Introduction -- 2 Molecular Structure of CO2. , 3 Thermo-Kinetics of CO2 Conversion -- 4 CO2 Conversion Methods and Products -- 4.1 Fischer-Tropsch Gas-to-Liquid (GTL) -- 4.2 Mineralization -- 4.3 Chemical Looping Dry Reforming -- 4.4 Enzymatic Conversion -- 4.5 Photocatalytic and Photo-Electrochemical Conversion -- 4.6 Thermo-Chemical Conversion -- 4.7 Hydrogenation -- 4.8 Reforming -- 5 Economic Assessment of CO2Alteration to Valuable Products -- 5.1 Syngas -- 5.2 Methanol -- 5.3 Formic Acid -- 5.4 Urea -- 5.5 Dimethyl Carbonate (DMC) -- 6 Conclusions and Future Perspective -- Acknowledgements -- References -- 10 Closing the Carbon Cycle -- Abstract -- 1 Introduction -- 2 Methods to Capture CO2 -- 3 CO2 Capture Technologies -- 4 CO2 Capture from the Air -- 5 Biomass and Waste-Based Chemicals -- 6 Advantages of Biomass-Based Chemicals -- 7 Replacement of Carbon-Based Energy Resources -- 8 Biomass Energy -- 9 Wind Energy -- 10 Solar Energy -- 11 Ocean Energy -- 12 Geothermal Energy -- 13 Hydrothermal Energy -- 14 Conclusions -- References -- 11 Carbon Dioxide Utilization to Energy and Fuel: Hydrothermal CO2 Conversion -- Abstract -- 1 Introduction -- 2 Hydrothermal CO2 Conversion -- 2.1 Metals and Catalysts as Reductant -- 2.2 Organic Wastes as Reductant -- 2.3 Inorganic Wastes as Reductant -- 2.4 Biomass as Reductant -- 3 Conclusion -- References -- 12 Ethylenediamine-Carbonic Anhydrase Complex for CO2 Sequestration -- 1 Introduction -- 2 An Overview of Carbonic Anhydrase (CA) -- 3 Mechanism of Action for Biocarbonate Formation -- 4 Historical Background of Carbonic Anhydrase -- 5 Sources of Carbonic Anhydrase -- 6 Carbonic Anhydrase in Microorganism -- 6.1 Micrococcus Lylae, Micrococcus Luteus, and Pseudomonas Fragi -- 6.2 Bacillus Subtilis and Citrobacter Freundii -- 6.3 Neisseria Gonorrhoeae -- 6.4 Helicobacter Pylori -- 7 Plant Carbonic Anhydrase -- 8 Overview of CO2. , 9 Sources of Carbon Dioxide (CO2) -- 10 Effect of Carbon Dioxide (CO2) -- 11 Carbon Dioxide Capturing -- 12 Carbon Dioxide (CO2) Sequestration -- 13 Carbon Dioxide (CO2) Sequestration by Carbonic Anhydrase -- 14 Separation System for CO2 Sequestration -- 15 Cryogenic Separation -- 16 Membrane Separation -- 17 Absorption -- 18 Adsorption -- 19 Bioreactors for CO2 Sequestration -- 20 Carbonic Anhydrase Immobilization -- 21 Ethylenediamine for Carbon Dioxide (CO2) Capturing -- 22 CO2 Capturing and Sequestration with Ethylenediamine-Carbonic Anhydrase Complex -- 23 CO2 Capturing and Sequestration Design and Optimization: Challenges and Future Prospects -- 24 Conclusion -- References -- 13 Green Pathway of CO2 Capture -- Abstract -- 1 Introduction -- 2 Molecular Structure of Carbon Dioxide -- 3 CO2 Capture System -- 3.1 Post-Combustion System -- 3.2 Pre-Combustion System -- 3.3 Oxy-Fuel Combustion System -- 4 Absorption Technology -- 4.1 Green Absorption with Ionic Liquids -- 4.1.1 Properties and Uses of Ionic Liquids -- 4.1.2 CO2 Solubility in PILs -- 4.1.3 CO2 Absorption in PILs with Carboxylate Anion -- 4.2 Reaction Mechanism Involved in CO2-Absorption -- 5 Adsorption Technology -- 5.1 Organic Adsorbents -- 5.1.1 Activated Charcoal -- 5.1.2 Biochar -- 5.1.3 Metal-Organic Frameworks (MOFs) -- 5.2 Other CO2 Adsorbents -- 5.2.1 Metal Oxide-Based Absorbents -- 5.2.2 Zeolites -- 5.3 Biological Processes of CO2Sequestration -- 5.3.1 Carbon Utilization by Forest and Agricultural Management -- 5.3.2 Ocean Fertilization -- 5.3.3 CO2 Capture by Microalgae -- 5.4 Electrochemical Ways for CO2 Capture -- 6 Conclusion -- References -- 14 Carbon Derivatives from CO2 -- Abstract -- 1 Introduction -- 2 Artificial Photoreduction -- 3 Electrochemical Reduction -- 4 Hydrogenation -- 5 Synthesis of Organic Carbonates -- 6 Reforming. , 7 Photocatalytic Reduction of CO2 with Water.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Dordrecht :Springer Netherlands,
    Keywords: Solvents. ; Electronic books.
    Description / Table of Contents: This book offers an overview of types of solvents and discusses their applications in extraction, organic synthesis, biocatalytic processes, production of fine chemicals, biochemical transformations, composite material, energy storage, polymers and more.
    Type of Medium: Online Resource
    Pages: 1 online resource (517 pages)
    Edition: 1st ed.
    ISBN: 9789400728912
    DDC: 541.3482
    Language: English
    Note: Intro -- Green Solvents II -- Preface -- Editor's Biography -- Acknowledgments -- Contents -- Contributors -- Chapter 1: Ionic Liquids as Green Solvents: Progress and Prospects -- 1.1 Introduction -- 1.2 History of Ionic Liquids (ILs) -- 1.3 Structure of Ionic Liquids (ILs) -- 1.3.1 Cations -- 1.3.2 Anions -- 1.4 Synthesis of Ionic Liquids (ILs) -- 1.4.1 Quaternization Reactions -- 1.4.2 Anion-Exchange Reactions -- 1.4.2.1 Lewis-Acid-Based Ionic Liquids (ILs) -- 1.4.2.2 Anion Metathesis -- 1.5 Properties of Ionic Liquids (ILs) -- 1.5.1 Melting Point -- 1.5.2 Volatility -- 1.5.3 Thermal Stability -- 1.5.4 Viscosity -- 1.5.5 Density -- 1.5.6 Polarity -- 1.5.7 Conductivity and Electrochemical Window -- 1.5.8 Toxicity -- 1.5.9 Air and Moisture Stability -- 1.5.10 Cost and Biodegradability -- 1.6 Solvent Properties and Solvent Effects -- 1.6.1 Solute-Ionic Liquids (ILs) Interactions -- 1.6.1.1 Interaction of Ionic Liquids (ILs) with Water -- 1.6.1.2 Interaction of Ionic Liquids (ILs) with Acid and Base -- 1.6.1.3 Interaction of Ionic Liquids (ILs) with Aromatic Hydrocarbon -- 1.6.1.4 Interaction with Chiral Substrates -- 1.7 Conclusions -- References -- Chapter 2: Ionic Liquids as Green Solvents for Alkylation and Acylation -- 2.1 Introduction -- 2.2 Alkylation -- 2.2.1 Ionic Liquids as Green Solvents -- 2.2.2 Ionic Liquids as Dual Green Solvents and Catalysts -- 2.2.3 Ionic Liquids Immobilized on Solid Supports -- 2.3 Acylation -- 2.3.1 Ionic Liquids as Green Solvents -- 2.3.2 Ionic Liquids in Dual Role as Green Solvents and Catalysts -- 2.3.3 Immobilized Ionic Liquids -- 2.4 Remarks -- References -- Chapter 3: Ionic Liquids as Green Solvents for Glycosylation Reactions -- 3.1 Introduction -- 3.2 Preparation of Acid-Ionic Liquids -- 3.3 Reusability of Acid-Ionic Liquids -- 3.4 Tunability and Basicity of Ionic Liquids. , 3.5 Nonvolatility of Ionic Liquids -- 3.6 Conclusions -- References -- Chapter 4: Ionic Liquid Crystals -- 4.1 Introduction -- 4.2 Ionic Liquid Crystals Based on Organic Cationsand Anions -- 4.2.1 Imidazolium-Based Ionic Liquid Crystals -- 4.2.2 Pyrrolidinium-Based Ionic Liquid Crystals -- 4.2.3 Pyridinium and Bipyridinium-Based IonicLiquid Crystals -- 4.2.4 Morpholinium-, Piperazinium-, and Piperidinium-BasedIonic Liquid Crystals -- 4.2.5 Ammonium-Based Ionic Liquid Crystals -- 4.2.6 Guanidinium-Based Ionic Liquid Crystals -- 4.2.7 Phosphonium-Based Ionic Liquid Crystals -- 4.2.8 Anions -- 4.3 Ionic Liquid Crystals Based on Metal Ions -- 4.4 Polymeric Ionic Liquid Crystals -- 4.4.1 Main-Chain Ionic Liquid-Crystalline Polymers -- 4.4.2 Side-Chain Ionic Liquid-Crystalline Polymers -- 4.4.3 Dendrimers -- 4.5 Applications of Ionic Liquid Crystals -- 4.6 Conclusions -- References -- Chapter 5: Application of Ionic Liquids in Extraction and Separation of Metals -- 5.1 Introduction -- 5.2 Processing Metal Oxides and Ores with Ionic Liquids -- 5.2.1 Metal Oxides Processing -- 5.2.2 Mineral Processing -- 5.3 Electrodeposition of Metals Using Ionic Liquids -- 5.3.1 Electrodeposition of Aluminum -- 5.3.2 Electrodeposition of Magnesium -- 5.3.3 Electrodeposition of Titanium -- 5.4 Ionic Liquids in Solvent Extraction of Metal Ions -- 5.5 Conclusions -- References -- Chapter 6: Potential for Hydrogen Sulfide Removal Using Ionic Liquid Solvents -- 6.1 Introduction -- 6.2 Ionic Liquids as Physical Solvents for H 2 S Removal -- 6.3 Hybrid Solvents Comprising Ionic Liquids and Amines -- 6.4 Conclusions and Outlook -- References -- Chapter 7: Biocatalytic Reactions in Ionic Liquid Media -- 7.1 Introduction -- 7.2 Biocatalyst Tested in Ionic Liquids -- 7.2.1 Lipases -- 7.2.2 Esterases and Proteases -- 7.2.3 Glycosidases -- 7.2.4 Oxidoreductases. , 7.3 Effect of the Ionic Liquid Composition on the Activity and Stability of Enzymes -- 7.4 Biotransformation in Ionic Liquids -- 7.4.1 Synthesis of Flavour Esters -- 7.4.2 Biotransformations of Polysaccharides and Nucleotides -- 7.4.3 Synthesis of Biodiesel -- 7.4.4 Synthesis of Polyesters -- 7.4.5 Resolution of Racemates -- 7.4.6 Synthesis of Carbohydrates -- 7.5 Conclusions -- References -- Chapter 8: Ionic Liquids/Supercritical Carbon Dioxide as Advantageous Biphasic Systems in Enzymatic Synthesis -- 8.1 Introduction -- 8.2 Supercritical Carbon Dioxide in Enzymatic Synthesis -- 8.3 Ionic Liquids as Reaction Media in Enzymatic Synthesis -- 8.4 Supercritical Carbon Dioxide/Ionic Liquid Biphasic System in Enzymatic Synthesis -- 8.5 Conclusions -- References -- Chapter 9: Ionic Liquids as Lubricants -- 9.1 Introduction -- 9.2 Overview of Ionic Liquids (ILs) -- 9.2.1 Definition and Types of Ionic Liquids (ILs) -- 9.2.2 Relationship Between Molecular Structure and Properties of Ionic Liquids (ILs) -- 9.3 Common Ionic Liquids (ILs) as Lubricants -- 9.3.1 Ionic Liquids (ILs) as Lubrication Oils -- 9.3.1.1 Ionic Liquids (ILs) as Lubrication Oils for Fe Alloy/Steel or Steel/Steel Contacts -- 9.3.1.2 Ionic Liquids (ILs) as Lubrication Oils of Light Alloys -- 9.3.1.3 Ionic Liquids (ILs) as Lubrication Oils for Specific Contacts -- 9.3.1.4 Ionic Liquids (ILs) as Lubrication Oils Under Vacuum -- 9.3.2 Ionic Liquids (ILs) as Lubrication Additives -- 9.3.2.1 Ionic Liquids (ILs) as Water Additives -- 9.3.2.2 Ionic Liquids (ILs) as Mineral Oil Additives -- 9.3.2.3 Ionic Liquids (ILs) as Synthetic Oil and Lubrication Grease Additives -- 9.3.2.4 Ionic Liquids (ILs) as Polymer Material Additives -- 9.3.3 Additives of Ionic Liquid (IL) Lubricants -- 9.3.4 Thin Films -- 9.4 Function of Ionic Liquids (ILs) as Lubricants. , 9.4.1 Function of Ionic Liquids (ILs) as Lubrication Oils -- 9.4.2 Function of Ionic Liquids (ILs) as Additives or Thin Films -- 9.5 Lubrication Mechanism -- 9.6 Conclusions and Outlook -- References -- Chapter 10: Stability and Activity of Enzymes in Ionic Liquids -- 10.1 Introduction -- 10.1.1 Ionic Liquid in Reference to Its Origin -- 10.1.2 Ionic Liquid as a Solvent -- 10.1.3 Enzymes in Ionic Liquids -- 10.2 Enzyme Stability in Ionic Liquids -- 10.2.1 Stability of Lipases -- 10.2.2 Stability of Monellin -- 10.2.3 Stability of Cytochrome c -- 10.2.4 Stability of α -Chymotrypsin -- 10.2.5 Stability of Penicillin G Acylase -- 10.3 Methods of Stabilizing Proteins/Enzymes in Ionic Liquids -- 10.3.1 Stabilization by Ionic Liquid Coating -- 10.3.2 Stabilization by Anchoring with Carbon Nanotubes -- 10.3.3 Stabilization by Capping with Nanoparticles -- 10.3.4 Stabilization by Entrapment in Hydrogels -- 10.3.5 Stabilization by Enzyme Modification -- 10.3.6 Stabilization by Emulsification of Ionic Liquids -- 10.4 Catalytic Activity of Enzymes in Ionic Liquids -- 10.4.1 Biotransformations by Lipases and Esterases -- 10.4.1.1 Esterification and Transesterification Reaction -- 10.4.1.2 Enantioselective Hydrolysis Reaction -- 10.4.1.3 Enantioselective Acylation Reaction -- 10.4.1.4 Kinetic Resolution of Alcohols -- 10.4.2 Reactions Catalyzed by Proteases -- 10.4.3 Carbohydrate Synthesis by Glycosidases -- 10.4.4 Hydrocyanation Reaction by Lyases -- 10.4.5 Biocatalytic Redox Reactions by Oxidoreductases -- 10.4.6 Enzymatic Polymerization Reaction in Ionic Liquids -- 10.5 Stability/Activity Vis-à-vis Solvent Property of Ionic Liquids: A Structure-Activity Relationship (SAR) Analysis -- 10.6 Conclusions -- References -- Chapter 11: Supported Ionic Liquid Membranes: Preparation, Stability and Applications -- 11.1 Introduction. , 11.2 Methods of Preparation and Characterization of Supported Ionic Liquid Membranes -- 11.3 Stability of Supported Ionic Liquid Membranes -- 11.4 Mechanism of Transport Through Supported Ionic Liquid Membranes -- 11.5 Fields of Application of Supported Liquid Membranes -- 11.6 Conclusions -- References -- Chapter 12: Application of Ionic Liquids in Multicomponent Reactions -- 12.1 Introduction -- 12.1.1 Ionic Liquids Based on 1-Butyl-3-methylimidazolium -- 12.1.1.1 1-Butyl-3-methylimidazolium -- 12.1.1.2 1-Butyl-3-methylimidazolium Hexafluorophosphate -- 12.1.1.3 1-n-Butyl-3-methylimidazolium Bromide -- 12.1.1.4 Butyl Methyl Imidazolium Hydroxide -- 12.1.1.5 Other 1-Butyl-3-methylimidazolium-Based Ionic Liquids -- 12.1.2 Other Imidazole-Based Ionic Liquids -- 12.1.2.1 Ionic Liquid-Supported Iodoarenes -- 12.1.2.2 1,3- n -Dibutylimidazolium Bromide -- 12.1.2.3 1- n -Butylimidazolium Tetrafluoroborate -- 12.1.2.4 1-Ethyl-3-methylimidazole Acetate -- 12.1.2.5 An Acidic Ionic Liquid -- 12.1.2.6 Task-Specific Ionic Liquids -- 12.1.2.7 1-Methyl-3-heptyl-imidazolium Tetrafluoroborate -- 12.1.2.8 1-[2-(Acetoacetyloxy)ethyl]-3-methylimidazolium Hexafluorophosphate-Bound Acetoacetate -- 12.1.2.9 1-[2-(Acetoacetyloxy)ethyl]-3-methylimidazolium Tetrafluoroborate- or Hexafluorophosphate-Bound b -oxo Esters -- 12.1.2.10 1-(2-Hydroxyethyl)-3-methylimidazolium Tetrafluoroborate or Hexafluorophosphate and N -(2-Hydroxyethyl)pyridinium Tetrafluoroborate or Hexafluorophosphate -- 12.1.2.11 PEG-1000-Based Dicationic Acidic Ionic Liquid -- 12.1.2.12 1-Ethyl-3-methylimidazolium ( S)-2-Pyrrolidinecarboxylic Acid Salt -- 12.1.2.13 1-Methyl-3-pentylimidazolium Bromide -- 12.1.2.14 3-Methyl-1-sulfonic Acid Imidazolium Chloride -- 12.1.3 Other Ionic Liquids -- 12.2 Conclusions -- References. , Chapter 13: Ionic Liquids as Binary Mixtures with Selected Molecular Solvents, Reactivity Characterisation and Molecular-Microscopic Properties.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Millersville :Materials Research Forum LLC,
    Keywords: Electronic books.
    Description / Table of Contents: The book focuses on the applications of ion exchange resins in processes.
    Type of Medium: Online Resource
    Pages: 1 online resource (175 pages)
    Edition: 1st ed.
    ISBN: 9781644902219
    Series Statement: Materials Research Foundations Series ; v.137
    Language: English
    Note: Intro -- front-matter -- Table of Contents -- Preface -- 1 -- Applications of Ion Exchange Resins in Protein Separation and Purification -- 1. Introduction -- 2. Types of ion exchange resins -- 3. Functionalization of ion exchange resin -- 4. Characterization of ion exchange resin -- 4.1 Elemental analysis -- 4.2 FT-IR spectra -- 4.3 Thermogravimetric analysis -- 5. Analysis of variables for protein IEC -- 5.1 Stability and pI of proteins -- 5.2 Effect of the support on the chromatographic separation of proteins -- 5.3 Effect of buffer and mobile phase -- 6. Steps of protein separation by IEC -- 7. Types of protein purified by IEC -- 8. Future prospects of IEC -- Acknowledgments -- References -- 2 -- Applications of Ion Exchange Resins in Vitamins Separation and Purification -- 1. Introduction -- 2. Importance of vitamins -- 3. Categorisation of vitamins -- 3.1 Water soluble vitamins -- 3.2 Fat soluble vitamins -- 4. Origin of vitamins -- 5. Isolation and purgation of vitamin -- 6. Ion-exchange chromatography -- 7. Ion exchange chromatographic isolation and purgation of vitamin K1 -- 8. Ion exchange chromatographic isolation and purgation of vitamin C -- 9. Ion exchange chromatographic isolation and purgation of vitamin B1, vitamin B2 and vitamin B6 -- Conclusion -- References -- 3 -- Application of Ion Exchange Resins in Protein Separation and Purification -- 1. Basic principle of protein separation and purification by chromatographic method -- 2. Chromatographic methods of protein purification -- 2.1 Gel filtration or permeation chromatography -- 2.2 Affinity chromatography -- 2.3 Immuno affinity chromatography -- 2.4 Metal chelate chromatography -- 2.5 Other Chromatographic techniques -- 3. Principle of separation of proteins by ion exchange chromatography -- 4. Strong and weak ion exchange resin -- 5. Choice of buffer. , 6. Experimental procedure of ion exchange resin -- 6.1 Equilibration -- 6.2 Sample Application and Wash -- 6.3 Elution -- 6.4 Regeneration -- 7. Morphology of ion exchange resin -- 7.1 Capacity of ion exchange resin -- 7.2 Stability -- 7.3 Cross linking of resins -- 7.4 Donnan equilibrium -- 8. Parameters for optimisation of ion exchange methods -- 8.1 Resolution -- 8.2 Efficiency -- 8.3 Selectivity -- Summary -- References -- 4 -- Ion Exchange Resins for Selective Separation of Toxic Metals -- 1. Introduction -- 2. Ion exchange resins (IERs) -- 3. Type of IERs -- 4. Synthesis of IERs -- 5. Uses of IERs -- 6. Activity of IERs -- 7. Properties of IERs -- 7.1 IE capacity of resin -- 7.2 Water retention capacity of ion exchange resin -- 7.3 Density of ion exchange resin -- 7.4 Surface area of ion exchange resin -- 7.5 Regeneration of ion exchange resin -- 8. Selectivity of IERs -- 9. Toxic metals -- 10. Selective separation of toxic metals -- 11. Modern ion exchange separation method in industry and its future prospects -- Conclusion -- References -- 5 -- Separation and Purification of Bioactive Molecules by Ion Exchange -- 1. Introduction -- 1.1 Reversed phase chromatography -- 2. Polymeric sorbents for preparative chromatography of biologically active compounds -- 2.1 Designing a biochemical purification -- 3. Ion-exchange separation and purification of polyphenols -- 3.1 Separation of bioactive catechin derivatives by AEC -- 4. Ion-exchange separation and purification of protein -- 5. Use of ion-exchange chromatography for the separation of peptide -- 5.1 Separation of human C-peptide by ion exchange -- 6. Separation of Alkaloids from Chinese Medicines by ion-exchange -- 7. Separation of plasmid DNA using ion-exchange chromatography -- 8. Separation of carbohydrates from seaweed using ion-exchange chromatography -- 9. Future Prospects -- References. , 6 -- Ion Exchange Resins as Carriers for Sustained Drug Release -- 1. Introduction -- 2. Principles of sustained drug release -- 2.1 Evolution of sustained drug delivery systems -- 2.2.1 First-generation delivery systems -- 2.2.2 Second-generation delivery systems -- 2.2.3 Third/ Next generation delivery systems -- 3. Types of sustained drug delivery systems -- 3.1 Diffusion-controlled system -- 3.1.1 Reservoir system -- 3.1.2 Matrix system -- 3.2 Osmotic system -- 3.3 Floating system -- 3.4 Bioadhesive system -- 3.5 Liposome system -- 4. IERs as drug delivery systems -- 4.1 Chemistry of IERs -- 4.2. Complexation of IER and the drug -- 4.2.1 Selection of the drug -- 4.2.2 Purification of resins -- 4.2.3 Drug loading -- 4.2.3.1 Batch method -- 4.2.3.2 Column method -- 4.2.4 Factors affecting drug loading -- 4.2.4.1 Particle size -- 4.2.4.2 Porosity and swelling -- 4.2.4.3 Available capacity -- 4.2.4.4 Acid-base strength -- 4.2.5 Evaluation of drug resinates -- 5. Modified resinates -- 6. Release kinetics of drugs complexed with IERs -- 7. Efficiency of IERs as the delivery mechanism -- 7.1 Oral drugs -- 7.2 Nasal drugs -- 7.3 Ophthalmic drugs -- 7.4 Oro-dispersible films (ODF) -- 7.5 Oral liquid suspensions -- 8. Commercial IERs used in sustained drug delivery -- 8.1 Dowex 50W -- 8.2 Indion 244 -- 8.3 Amberlite IRP-69 -- 9. Future perspectives -- References -- 7 -- Ion Exchange Resins for Clinical Applications -- 1. Introduction -- 2. Application of resins in formulation-related issues -- 2.1 Taste development -- 2.2 Aiding in dissolution -- 2.3 Role as disintegrating agents -- 2.4 Drug stabilization -- 2.5 Water purification for the production of pharmaceuticals -- 2.6 Anti-deliquescence -- 3. Applications in drug release systems -- 3.1 Simple resinates -- 3.2 Microencapsulated resinates -- 3.3 Hollow fiber system -- 3.4 Gastric retentive system. , 3.5 Sigmoidal release system -- 4. Applications in targeted drug delivery -- 4.1 Oral drug delivery -- 4.2 Nasal drug delivery -- 4.3 Transdermal drug delivery -- 4.4 Ophthalmic drug delivery -- 4.5 Application in cancer treatment -- 5. Applications in therapeutics -- 5.1 High cholesterol treatment -- 5.2 Application in treatment of pruritus -- 5.3 Applications in treating of oedema -- 5.4 Application in the treatment of cardiac oedema -- 5.5 Applications as antacids -- 5.6 Treating uremia -- Conclusion -- References -- 8 -- Applications of Ion Exchange Resins in Water Softening -- 1. Introduction -- 2. Water hardness -- 2.1 Salts providing hardness -- 2.2 Negative effect of water hardness -- 3. Ion exchange resins for water softening -- 3.1 Strongly acidic resins -- 3.2 Weakly acidic resins -- 3.3 Polymer-inorganic resins -- 4. Regeneration of ion exchange resins and their fouling -- 5. Ion exchange in a combination with other processes -- 5.1 Ion exchange and ultrasound -- 5.2 Ion exchange and electrodialysis -- Conclusions -- References -- back-matter -- Keyword Index -- About the Editors.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Millersville :Materials Research Forum LLC,
    Keywords: Electronic books.
    Description / Table of Contents: Perovskite supercapacitors have a promising future in the area of energy storage; due to their superior optoelectronic characteristics, simple device construction and increased efficiency.
    Type of Medium: Online Resource
    Pages: 1 online resource (186 pages)
    Edition: 1st ed.
    ISBN: 9781644902738
    Series Statement: Materials Research Foundations Series ; v.151
    Language: English
    Note: Intro -- front-matter -- Table of Contents -- Preface -- 1 -- Organic-Inorganic Perovskite Based Solar Cells -- 1. Introduction -- 2. Silicon Solar Cells (SSCs) -- 3. Perovskites-Based Solar Cells (PSCs) -- 3.1 Structure of PSCs -- 3.2 Optoelectronic Properties Of PSCs -- 3.3 Influence of A, B, and X site -- 3.3.1 A-Site -- 3.3.2 B-Site -- 3.3.3 X-Site -- 4. Mixed Concentration of Perovskite Absorbing Layer -- 4.1 A-site -- 4.4 Mixed B-Sites Cations -- 4.5 X-Site -- 5. Requirements for Each Layer -- 5.1 Electron Transport Layer -- 5.1.1 Different ETL Material Used In Perovskite Cells -- 5.2 Hole Transporting Layer -- 5.2.1 Hole Transporting Material (HTM) -- 5.2.2 Inorganic P-type semiconductors as HTMs -- 5.2.3 Organometallic HTMs -- 5.3 Absorbing Layer -- 5.3.1 Preparation Method of The Perovskite Light Absorbing Layer -- 6. Fabrication Techniques -- 6.1 One-Step Deposition -- 6.2 Two-Step Deposition -- 6.3 Vapor Deposition Method -- 6.4 Spin Coating -- 6.4.1 One-Step Spin Coating -- 6.4.2 Two-Step Spin Coating -- 6.5 Thermal Vapor Deposition -- 7. Challenges in Perovskite-Based Solar Cells -- 7.1 Stability Challenges -- 7.2 Thermal Effect -- 7.3 Toxicity -- 7.4 J-V Hysteresis -- 8. Efficiency of Perovskite -- 9. Future Perspectives -- Conclusion -- References -- 2 -- Organometallic Halides-Based Perovskite Solar Cells -- 1. Introduction -- 1.1 Carbon-based energy sources -- 1.2 The global trend toward renewable energy resources -- 1.3 Era of Solar Cell (SCs) technology -- 1.4 Green energy (Carbon free) -- 2. Photovoltaic effect -- 2.1 Discovery of Sir Alexander Edmond Becquerel -- 2.2 Development of solar cells -- 2.3 Generations -- 2.4 Types of 3rd generation of SCs -- 3. Perovskite-based solar cells -- 3.1 Introduction to perovskite compounds -- 3.2 Classification of perovskite -- 3.3 Organometallic halide-based perovskite (OMHP) solar cells. , 3.4 Evolutionary history of perovskite solar cells with their efficiency -- 3.4.1 Open-circuit voltage (OCV) -- 3.4.2 Short-circuit voltage (Jsc) -- 3.4.3 Fill factor (FF) -- 3.5 Crystal structure of organometallic halides-based perovskite solar cells -- 3.6 Behavior of OMHP with different combinations of A, B, and X -- 3.6.1 A-site cations -- 3.6.2 B-site cations -- 3.6.3 X-site anions -- 3.6.3.1 Iodide (I) anion -- 3.6.3.2 Chloride (Cl) anion -- 3.6.3.3 Bromide (Br) anion -- 3.7 Goldschmidt tolerance factor ( ) -- 3.8 Octahedral factor (OF) -- 4. Important Parameters of Organometallic Halide-Based Perovskite (OMHP) -- 4.1 Charge transport (CT) -- 4.2 Diffusion length and mobility of charge carriers -- 4.3 Electronic structure (ES) -- 4.4 Effect of effective masses of holes and electron carriers -- 5. Environmental instability of organometallic halides-based perovskites (OMHPs) solar cells -- 5.1 Degradation and stability issue -- 5.2 Effect of moisture -- 5.3 Effect of temperature -- 5.4 Effect of oxygen and light -- 6. Recent development in the OMHP solar cells -- 6.1 Ion migration and the suppression of ions -- 6.2 Solvent engineering -- 6.3 Annealing -- 6.4 2D/3D technology -- 6.5 Organometallic halides-based perovskite quantum dot solar cells -- 6.6 Solid-state hole conductor-free (HCF) OMHP-SCs -- 6.7 Tandem perovskite solar cells (TPSCs) -- 6.8 Passivation of OMHP-SCs -- Conclusion -- References -- 3 -- Perovskite Based Ferroelectric Materials for Energy Storage Devices -- 1. Introduction -- 2. Ferroelectricity -- 3. Ferroelectric Perovskites -- 4. Lead-Based Perovskite Ferroelectrics -- 4.1 Niobate-Based Ferroelectrics -- 4.2 Lanthanum Based Ferroelectrics -- 4.3 Lead-Free Perovskite Ferroelectrics -- 4.3.1 Barium Titanate Based Ferroelectric -- 4.3.2 Alkaline Niobate Based Ferroelectric -- 4.3.3 Bismuth Based Ferroelectrics. , 5. Energy Storage Devices -- 5.1 Types of Energy Storage Devices -- 5.1.1 Battery Energy Storage -- 5.1.2 Thermal Energy Storage -- 5.1.3 Pumped Hydroelectric Energy Storage -- 5.1.4 Mechanical Energy Storage -- 5.1.5 Hydrogen Energy Storage -- 6. Transport Properties -- 7. Energy Density of Ferroelectrics -- 7.1 Ways to Improve Energy Density -- 7.1.1 Chemical Substitution -- 8. High Energy Efficiency Perovskite Solar Cells -- 9. Ferroelectrics for Energy Storage Devices -- 9.1 Fuel Cells -- 9.2 Photocatalysts -- 9.2.1 Characterization and Preparation of Photo Catalysts -- 9.3 Capacitive Energy Storage Devices -- Conclusion -- References -- 4 -- Techniques for Recycling and Recovery of Perovskites Solar Cells -- 1. Introduction -- 1.1 Recycling Roadmap -- 1.2 Delamination of perovskite solar cell modules -- 3. Need of recycling -- 3.1 Degradation of perovskite solar cells -- 3.2 Use of expensive raw materials -- 3.3 Toxicity behavior of lead -- 4. Recycling of several parts of perovskite solar cells -- 4.1 Recycling of transparent conducting oxide (TCO) -- 4.2 Recycling of Electron Transport Layer (ETL) -- 4.3 Recycling of toxic lead component -- 4.4 Recycling of metal electrodes -- 4.5 Recycling of monolithic structure -- 5. Future challenges -- 6. Analysis of cost -- Conclusion and future perspective -- Conflict of interest -- Acknowledgment -- References -- 5 -- Lead-Free Perovskite Solar Cells -- 1. Introduction -- 2. Categories of Lead-Free Perovskite Solar Cells (PSCs) -- 2.1 Tin-Based PSCs -- 2.2 Germanium-Based PSCs -- 2.3 Antimony and bismuth-based PSCs -- 2.4 Halide double perovskites (HDPs) -- 3. Improvement Scopes in Lead-Free PSCs -- 3.1 Photovoltaic Efficiency -- 3.2 Stability -- 3.3 Defect Parameter Characterization and Defect Tolerance -- 3.4 Charge Transport Characterization -- 3.5 Electronic Dimensionality. , 4. Processing of High-Quality Lead-Free Perovskite Films -- 4.1 Vapour deposition method -- 4.2 Anti-Solvent Technique -- 4.3 Solution Processing -- 4.4 Two-Step Deposition -- 4.5 Low Pressure Assisted Solution Processing -- 4.6 Spin Coating -- 4.7 Inter-diffusion Method -- 4.8 Doctor Blade Coating -- 4.9 Vacuum Flash-Assisted Solution Process (VASP) -- 4.10 Complex Assisted Gas Quenching (CAGQ) method -- 4.11 Soft Cover Deposition (SCD) -- Conclusion and outlook -- References -- 6 -- Technical Potential Evaluation of Inorganic Tin Perovskite Solar Cells -- 1. Introduction -- 2. Inorganic tin perovskite solar cells parameters used in AHP analysis -- 3. AHP Methodology -- 4. Results and discussion -- Conclusions -- References -- back-matter -- Keyword Index -- About the Editors.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Keywords: Nanotechnology-Health aspects. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (446 pages)
    Edition: 1st ed.
    ISBN: 9780323951722
    DDC: 615.1
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...