GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Publication Date: 2022-05-26
    Description: Dataset: nut_phyto
    Description: Phytoplankton chlorophyll and nutrient studies from R/V Albatross IV, R/V Endeavor, and R/V Oceanus broadscale cruises in the Gulf of Maine and Georges Bank from 1997-1999 For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/2328
    Description: National Science Foundation (NSF) unknown GB NSF, National Oceanic and Atmospheric Administration (NOAA) unknown GB NOAA
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Siedlecki, S. A., Salisbury, J., Gledhill, D. K., Bastidas, C., Meseck, S., McGarry, K., Hunt, C. W., Alexander, M., Lavoie, D., Wang, Z. A., Scott, J., Brady, D. C., Mlsna, I., Azetsu-Scott, K., Liberti, C. M., Melrose, D. C., White, M. M., Pershing, A., Vandemark, D., Townsend, D. W., Chen, C,. Mook, W., Morrison, R. Projecting ocean acidification impacts for the Gulf of Maine to 2050: new tools and expectations. Elementa: Science of the Anthropocene, 9(1), (2021): 00062, https://doi.org/10.1525/elementa.2020.00062.
    Description: Ocean acidification (OA) is increasing predictably in the global ocean as rising levels of atmospheric carbon dioxide lead to higher oceanic concentrations of inorganic carbon. The Gulf of Maine (GOM) is a seasonally varying region of confluence for many processes that further affect the carbonate system including freshwater influences and high productivity, particularly near the coast where local processes impart a strong influence. Two main regions within the GOM currently experience carbonate conditions that are suboptimal for many organisms—the nearshore and subsurface deep shelf. OA trends over the past 15 years have been masked in the GOM by recent warming and changes to the regional circulation that locally supply more Gulf Stream waters. The region is home to many commercially important shellfish that are vulnerable to OA conditions, as well as to the human populations whose dependence on shellfish species in the fishery has continued to increase over the past decade. Through a review of the sensitivity of the regional marine ecosystem inhabitants, we identified a critical threshold of 1.5 for the aragonite saturation state (Ωa). A combination of regional high-resolution simulations that include coastal processes were used to project OA conditions for the GOM into 2050. By 2050, the Ωa declines everywhere in the GOM with most pronounced impacts near the coast, in subsurface waters, and associated with freshening. Under the RCP 8.5 projected climate scenario, the entire GOM will experience conditions below the critical Ωa threshold of 1.5 for most of the year by 2050. Despite these declines, the projected warming in the GOM imparts a partial compensatory effect to Ωa by elevating saturation states considerably above what would result from acidification alone and preserving some important fisheries locations, including much of Georges Bank, above the critical threshold.
    Description: This research was financially supported by the Major Special Projects of the Ministry of Science and Technology of China (2016YFC020600), the Young Scholars Science Foundation of Lanzhou Jiaotong University (2018033), and the Talent Innovation and Entrepreneurship Projects of Lanzhou (2018-RC-84).
    Keywords: PM2.5 ; Contamination characteristics ; Meteorological factors ; Metal source analysis ; Lanzhou
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This is the author's version of the work and is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Clark, S., Hubbard, K. A., Anderson, D. M., McGillicuddy, D. J.,Jr, Ralston, D. K., & Townsend, D. W. Pseudo-nitzschia bloom dynamics in the Gulf of Maine: 2012-2016. Harmful Algae, 88, (2019): 101656, doi:10.1016/j.hal.2019.101656.
    Description: The toxic diatom genus Pseudo-nitzschia is a growing presence in the Gulf of Maine (GOM), where regionally unprecedented levels of domoic acid (DA) in 2016 led to the first Amnesic Shellfish Poisoning closures in the region. However, factors driving GOM Pseudo-nitzschia dynamics, DA concentrations, and the 2016 event are unclear. Water samples were collected at the surface and at depth in offshore transects in summer 2012, 2014, and 2015, and fall 2016, and a weekly time series of surface water samples was collected in 2013. Temperature and salinity data were obtained from NERACOOS buoys and measurements during sample collection. Samples were processed for particulate DA (pDA), dissolved nutrients (nitrate, ammonium, silicic acid, and phosphate), and cellular abundance. Species composition was estimated via Automated Ribosomal Intergenic Spacer Analysis (ARISA), a semi-quantitative DNA finger-printing tool. Pseudo-nitzschia biogeography was consistent in the years 2012, 2014, and 2015, with greater Pseudo-nitzschia cell abundance and P. plurisecta dominance in low-salinity inshore samples, and lower Pseudo-nitzschia cell abundance and P. delicatissima and P. seriata dominance in high-salinity offshore samples. During the 2016 event, pDA concentrations were an order of magnitude higher than in previous years, and inshore-offshore contrasts in biogeography were weak, with P. australis present in every sample. Patterns in temporal and spatial variability confirm that pDA increases with the abundance and the cellular DA of Pseudo-nitzschia species, but was not correlated with any one environmental factor. The greater pDA in 2016 was caused by P. australis – the observation of which is unprecedented in the region – and may have been exacerbated by low residual silicic acid. The novel presence of P. australis may be due to local growth conditions, the introduction of a population with an anomalous water mass, or both factors. A definitive cause of the 2016 bloom remains unknown, and continued DA monitoring in the GOM is warranted.
    Description: This research was funded by the National Science Foundation (Grant Numbers OCE-1314642 and OCE-1840381), the National Institute of Environmental Health Sciences (Grant Numbers P01 ES021923-01 and P01 ES028938-01), the Woods Hole Center for Oceans and Human Health, the Academic Programs Office of the Woods Hole Oceanographic Institution, the National Oceanic and Atmospheric Administration's Ecology and Oceanography of HABs (ECOHAB) project (contribution number ECO947), and the National Oceanic and Atmospheric Administration’s HAB Event Response Program (Grant numbers NA06NOS4780245 and NA09NOS4780193). We thank Maura Thomas at the University of Maine for support with nutrient collection and analysis. We also thank Kohl Kanwit at the Maine Department of Marine Resources, Anna Farrell, Jane Disney, and Hannah Mogenson at the Mt. Desert Island Biological Laboratory, Steve Archer at Bigelow Laboratory for Ocean sciences, and Bruce Keafer at the Woods Hole Oceanographic Institution for their work collecting samples and data used in the study. We also thank Maya Robert, Christina Chadwick, Laura Markley, Stephanie Keller Abbe, Karen Henschen, Emily Olesin, Steven Bruzek, Sheila O'Dea, April Granholm, Leanne Flewelling, and Elizabeth Racicot at the Florida Fish and Wildlife Conservation Commission-Fish and Wildlife Research Institute for processing samples for DA, DNA-based analyses, and cellular abundance.[CG]
    Keywords: Pseudo-nitzschia australis ; Pseudo-nitzschia plurisecta ; Domoic acid ; ARISA ; Gulf of Maine ; Silicic acid
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 14
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] During the winter months in mid- to high-latitude waters, low solar elevations and in situ marine light levels, along with deep turbulent vertical mixing of the upper water column, maintain phytoplankton production at its lowest levels of the year. This is despite high concentrations of inorganic ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 15
    ISSN: 1573-5133
    Keywords: herring ; otolith ; Sr/Ca concentration ratios ; increments
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Synopsis Elemental analyses, using wave-length dispersive electron microprobe techniques on otoliths from reared Atlantic herring larvae, Clupea harengus, showed trace quantities of strontium relative to that of calcium, and an inverse relationship between Sr/Ca concentration ratios and rearing temperature. These data are consistent with those for coral aragonite, in that there appears to be an inverse temperature effect on physiological incorporation of strontium in the otolith aragonite. Our determinations of Sr/Ca concentration ratios of lab-reared herring larvae showed that the deposition of strontium relative to calcium and the rearing temperature were related, where: T (° C) = −2.955 [Sr/Ca] × 1000 ± 19.172. This principle thus makes it possible to use Sr/Ca concentration ratios in fish otoliths to delineate past temperatures experienced by an individual. Further, combining electron microprobe analyses with scanning electron microscope (SEM) examinations of daily increments in the same otolith makes it possible to reconstruct the temperature history for an individual fish on a time scale of days. An example of the application of the technique to an approximately six-month-old field-caught herring larva is given, and the limitations of the technique are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...