GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Language
  • 11
    Publication Date: 2024-04-20
    Description: This dataset collection includes boron isotope, Mg/Ca, and Al/Ca data from planktonic foraminifera, reconstructed sea surface temperature, seawater pH and atmospheric CO2 concentrations, calculated Global Mean Temperature and Climate Sensitivity estimates, and recalculated seawater pH and atmospheric CO2 estimates from published planktonic foraminiferal boron isotope data.
    Keywords: Atmospheric CO2; climate sensitivity; Eocene; GMT; surface seawater pH
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2021-07-26
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2021-10-15
    Description: The Middle Eocene Climatic Optimum (MECO) was a gradual warming event and carbon cycle perturbation that occurred between 40.5 and 40.1 Ma. A number of characteristics, including greater-than-expected deep-sea carbonate dissolution, a lack of globally coherent negative δ13C excursion in marine carbonates, a duration longer than the characteristic timescale of carbon cycle recovery, and the absence of a clear trigger mechanism, challenge our current understanding of the Earth system and its regulatory feedbacks. This makes the MECO one of the most enigmatic events in the Cenozoic, dubbed a middle Eocene “carbon cycle conundrum.” Here we use boron isotopes in planktic foraminifera to better constrain pCO2 changes over the event. Over the MECO itself, we find that pCO2 rose by only 0.55–0.75 doublings, thus requiring a much more modest carbon injection than previously indicated by the alkenone δ13C-pCO2 proxy. In addition, this rise in pCO2 was focused around the peak of the 400 kyr warming trend. Before this, considerable global carbonate δ18O change was asynchronous with any coherent ocean pH (and hence pCO2) excursion. This finding suggests that middle Eocene climate (and perhaps a nascent cryosphere) was highly sensitive to small changes in radiative forcing.
    Keywords: 551 ; boron isotopes ; pCO2 reconstruction ; Middle Eocene Climatic Optimum ; carbon cycle ; paleoclimate ; cryosphere
    Language: English
    Type: map
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2023-10-26
    Description: Much of our understanding of Earth's past climate comes from the measurement of oxygen and carbon isotope variations in deep-sea benthic foraminifera. Yet, long intervals in existing records lack the temporal resolution and age control needed to thoroughly categorize climate states of the Cenozoic era and to study their dynamics. Here, we present a new, highly resolved, astronomically dated, continuous composite of benthic foraminifer isotope records developed in our laboratories. Four climate states-Hothouse, Warmhouse, Coolhouse, Icehouse-are identified on the basis of their distinctive response to astronomical forcing depending on greenhouse gas concentrations and polar ice sheet volume. Statistical analysis of the nonlinear behavior encoded in our record reveals the key role that polar ice volume plays in the predictability of Cenozoic climate dynamics.
    Description: Published
    Description: 1383–1387
    Description: 5A. Ricerche polari e paleoclima
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-02-01
    Description: The Early Eocene Climate Optimum (EECO, which occurred about 51 to 53 million years ago)1, was the warmest interval of the past 65 million years, with mean annual surface air temperature over ten degrees Celsius warmer than during the pre-industrial period2,3,4. Subsequent global cooling in the middle and late Eocene epoch, especially at high latitudes, eventually led to continental ice sheet development in Antarctica in the early Oligocene epoch (about 33.6 million years ago). However, existing estimates place atmospheric carbon dioxide (CO2) levels during the Eocene at 500–3,000 parts per million5,6,7, and in the absence of tighter constraints carbon–climate interactions over this interval remain uncertain. Here we use recent analytical and methodological developments8,9,10,11 to generate a new high-fidelity record of CO2 concentrations using the boron isotope (δ11B) composition of well preserved planktonic foraminifera from the Tanzania Drilling Project, revising previous estimates6. Although species-level uncertainties make absolute values difficult to constrain, CO2 concentrations during the EECO were around 1,400 parts per million. The relative decline in CO2 concentration through the Eocene is more robustly constrained at about fifty per cent, with a further decline into the Oligocene12. Provided the latitudinal dependency of sea surface temperature change for a given climate forcing in the Eocene was similar to that of the late Quaternary period13, this CO2 decline was sufficient to drive the well documented high- and low-latitude cooling that occurred through the Eocene14. Once the change in global temperature between the pre-industrial period and the Eocene caused by the action of all known slow feedbacks (apart from those associated with the carbon cycle) is removed2,3,4, both the EECO and the late Eocene exhibit an equilibrium climate sensitivity relative to the pre-industrial period of 2.1 to 4.6 degrees Celsius per CO2 doubling (66 per cent confidence), which is similar to the canonical range (1.5 to 4.5 degrees Celsius15), indicating that a large fraction of the warmth of the early Eocene greenhouse was driven by increased CO2 concentrations, and that climate sensitivity was relatively constant throughout this period.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    Società Geologica Italiana
    In:  Rendiconti online della Società Geologica Italiana, 31 . pp. 101-102.
    Publication Date: 2020-06-04
    Type: Article , PeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2018-03-07
    Description: The geochemical composition of foraminiferal tests is a valuable archive for the reconstruction of paleo-climatic, -oceanographic and -ecological changes. However, dissolution of biogenic calcite and precipitation of inorganic calcite (overgrowth and recrystallization) at the seafloor and in the sediment column can potentially alter the original geochemical composition of the foraminiferal test, biasing any resulting paleoenvironmental reconstruction. The δ11B of planktic foraminiferal calcite is a promising ocean pH-proxy but the effect of diagenesis is still poorly known. Here we present new δ11B, δ13C, δ18O, Sr/Ca and B/Ca data from multiple species of planktic foraminifera from time-equivalent samples for two low latitude sites: clay-rich Tanzanian Drilling Project (TDP) Site 18 from the Indian Ocean containing well-preserved (‘glassy’) foraminifera and carbonate-rich Ocean Drilling Program (ODP) Site 865 from the central Pacific Ocean hosting recrystallized (‘frosty’) foraminifera. Our approach makes the assumption that environmental conditions were initially similar at both sites so most chemical differences are attributable to diagenesis. Planktic foraminiferal δ18O and δ13C records show offsets in both relative and absolute values between the two sites consistent with earlier findings that these isotopic ratios are strongly influenced by diagenetic alteration. Sr/Ca and B/Ca ratios in planktic foraminiferal calcite are also offset between the two sites but there is little change in the relative difference between surface and deep dwelling taxa. In contrast, δ11B values indicate no large differences between well-preserved and recrystallized foraminifera suggesting that despite extensive diagenetic alteration the δ11B of biogenic calcite appears robust, potentially indicative of a lack of free exchange of boron between pore fluids and the recrystallizing CaCO3. Our finding may remove one potential source of uncertainty in δ11B based pH reconstructions and provide us with greater confidence in our ability to reconstruct pH in the ancient oceans from at least some recrystallized foraminiferal calcite. However, further investigations should extend this approach to test the robustness of our findings across a range of taphonomies, ages and burial settings.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2020-02-06
    Description: The response of the marine carbon cycle to changes in atmospheric CO2 concentrations will be determined, in part, by the relative response of calcifying and non-calcifying organisms to global change. Planktonic foraminifera are responsible for a quarter or more of global carbonate production, therefore understanding the sensitivity of calcification in these organisms to environmental change is critical. Despite this, there remains little consensus as to whether, or to what extent, chemical and physical factors affect foraminiferal calcification. To address this, we directly test the effect of multiple controls on calcification in culture experiments and core-top measurements of Globigerinoides ruber. We find that two factors, body size and the carbonate system, strongly influence calcification intensity in life, but that exposure to corrosive bottom waters can overprint this signal post mortem. Using a simple model for the addition of calcite through ontogeny, we show that variable body size between and within datasets could complicate studies that examine environmental controls on foraminiferal shell weight. In addition, we suggest that size could ultimately play a role in determining whether calcification will increase or decrease with acidification. Our models highlight that knowledge of the specific morphological and physiological mechanisms driving ontogenetic change in calcification in different species will be critical in predicting the response of foraminiferal calcification to future change in atmospheric pCO2.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019-02-01
    Description: The isotopic composition of boron (δ11B) in marine carbonates is well established as a proxy for past ocean pH, however, its robust application to palaeo-environments relies on the generation of species-specific calibrations. Existing calibrations utilising the deep-sea coral (DSC) Desmophyllum dianthus highlight the potential application of this pervasive species to pH reconstructions of intermediate depth waters. Nevertheless, considerable uncertainty remains regarding the estimation of seawater pH from these bulk skeletal δ11B measurements, likely resulting from microstructural heterogeneities in δ11B of D. dianthus. To circumvent this problem, thus improving the reliability of the D. dianthus δ11B-pH calibration, we present a new δ11B calibration of micro-sampled fibrous aragonite from this species. Modern coral specimens recovered from the Atlantic, Pacific, and Southern Oceans, micro-sampled using microdrilling, micromilling, and laser cutting extraction, were analysed for trace element (B/Ca, Mg/Ca, Sr/Ca, and U/Ca) and boron isotopic composition. We find the best calibration against the δ11B of borate in local ambient seawater (a function of pH and taken from hydrographic data sets; pH range 7.57 to 8.05) utilises δ11B measurements of fibres with likely slow growth rates and minimal contamination from adjacent microstructures (identified by low Mg/Ca) for each coral specimen. This new calibration exhibits a stronger, and better-defined dependence on ambient seawater pH compared to bulk coral δ11B; δ11Bfibre = (0.93 ± 0.17) × δ11Bborate + (12.02 ± 2.63). We suggest that the majority of the variability in measured δ11B between replicate bands of fibrous aragonite from a D. dianthus specimen can be explained by small incorporation of non-fibrous aragonite and surface impurities during microsampling and growth rate effects. This study confirms the utility of D. dianthus as an archive of precise palaeo-pH (± 0.07 pH units), provided that suitable sampling strategies are applied.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2018-03-07
    Description: Structure-based inhibitor design has led to the discovery of a number of potent inhibitors of glycogen phosphorylase b (GPb), N-acyl derivatives of β-d-glucopyranosylamine, that bind at the catalytic site of the enzyme. The first good inhibitor in this class of compounds, N-acetyl-β-d-glucopyranosylamine (NAG) (Ki = 32 μM), has been previously characterized by biochemical, biological and crystallographic experiments at 2.3 Å resolution. Bioisosteric replacement of the acetyl group by trifluoroacetyl group resulted in an inhibitor, N-trifluoroacetyl-β-d-glucopyranosylamine (NFAG), with a Ki = 75 μM. To elucidate the structural basis of its reduced potency, we determined the ligand structure in complex with GPb at 1.8 Å resolution. To compare the binding mode of N-trifluoroacetyl derivative with that of the lead molecule, we also determined the structure of GPb–NAG complex at a higher resolution (1.9 Å). NFAG can be accommodated in the catalytic site of T-state GPb at approximately the same position as that of NAG and stabilize the T-state conformation of the 280s loop by making several favourable contacts to Asn284 of this loop. The difference observed in the Ki values of the two analogues can be interpreted in terms of subtle conformational changes of protein residues and shifts of water molecules in the vicinity of the catalytic site, variations in van der Waals interaction, and desolvation effects.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...