GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 11
    facet.materialart.
    Unbekannt
    Copernicus Publications
    In:  EPIC3Climate of the Past, Copernicus Publications, 8(6), pp. 1781-1799, ISSN: 1814-9332
    Publikationsdatum: 2019-07-17
    Beschreibung: Interpreting stable oxygen isotope (δ18O) records from stalagmites is still one of the complex tasks in speleothem research. Here, we present a novel model-based approach, where we force a model describing the processes and modifications of δ18O from rain water to speleothem calcite (Oxygen isotope Drip water and Stalagmite Model – ODSM) with the results of a state-of-the-art atmospheric general circulation model enhanced by explicit isotope diagnostics (ECHAM5-wiso). The approach is neither climate nor cave-specific and allows an integrated assessment of the influence of different varying climate variables, e.g. temperature and precipitation amount, on the isotopic composition of drip water and speleothem calcite. First, we apply and evaluate this new approach under present-day climate conditions using observational data from seven caves from different geographical regions in Europe. Each of these caves provides measured δ18O values of drip water and speleothem calcite to which we compare our simulated isotope values. For six of the seven caves modeled δ18O values of drip water and speleothem calcite are in good agreement with observed values. The mismatch of the remaining caves might be caused by the complexity of the cave system, beyond the parameterizations included in our cave model. We then examine the response of the cave system to mid-Holocene (6000yr before present, 6ka) climate conditions by forcing the ODSM with ECHAM5-wiso results from 6ka simulations. For a set of twelve European caves, we compare the modeled mid-Holocene-to-modern difference in speleothem calcite δ18O to available measurements. We show that the general European changes are simulated well. However, local discrepancies are found, and might be explained either by a too low model resolution, complex local soil-atmosphere interactions affecting evapotranspiration or by cave specific factors such as non-equilibrium fractionation processes. The mid-Holocene experiment pronounces the potential of the presented approach to analyse δ18O variations on a spatially large (regional to global) scale. Modelled as well as measured European δ18O values of stalagmite samples suggest the presence of a strong, positive mode of the North Atlantic Oscillation at 6 ka before present, which is supported by the respective modelled climate parameters.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 12
    Publikationsdatum: 2015-12-09
    Beschreibung: This paper investigates the scientific value of retrieving H218O and HDO columns in addition to H216O columns from high-resolution ground-based near-infrared spectra. We present a set of refined H216O, H218O, and HDO spectral windows. The retrieved H216O, H218O, and HDO columns are used for an a posteriori calculation of columnar δD and δ18O. We estimate the uncertainties for the so-calculated columnar δD and δ18O values. These estimations include uncertainties due to the measurement noise, errors in the a priori data, and uncertainties in spectroscopic parameters. Time series of δ18O obtained from ground-based FTIR (Fourier transform infrared) spectra are presented for the first time. For our study we use a full physics isotopic general circulation model (ECHAM5-wiso). We show that the full physics simulation of HDO and H218O can already be reasonably predicted from the H216O columns by a simple linear regression model (scatter values between full physics and linear regression simulations are 35 and 4‰ for HDO and H218O, respectively). We document that the columnar δD and δ18O values as calculated a posteriori from the retrievals of H216O, H218O, and HDO show a better agreement with the ECHAM5-wiso simulation than the δD and δ18O values as calculated from the H216O retrievals and the simple linear regression model. This suggests that the H218O and HDO column retrievals add complementary information to the H216O retrievals. However, these data have to be used carefully, because of the different vertical sensitivity of the H216O, H218O, and HDO columnar retrievals. Furthermore, we have to note that the retrievals use reanalysis humidity profiles as a priori input and the results are thus not independent of the reanalysis data.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 13
    facet.materialart.
    Unbekannt
    Copernicus Publications
    In:  EPIC3Atmospheric Chemistry and Physics, Copernicus Publications, 16(11), pp. 6883-6900, ISSN: 1680-7324
    Publikationsdatum: 2016-06-10
    Beschreibung: A unique set of 1-year precipitation and stable water isotope measurements from the Japanese Antarctic station, Dome Fuji, has been used to study the impact of the synoptic situation and the precipitation origin on the isotopic composition of precipitation on the Antarctic Plateau. The Antarctic Mesoscale Prediction System (AMPS) archive data are used to analyse the synoptic situations that cause precipitation. These situations are investigated and divided into five categories. The most common weather situation during a precipitation event is an upper-level ridge that extends onto the Antarctic Plateau and causes strong northerly advection from the ocean. Most precipitation events are associated with an increase in temperature and wind speed, and a local maximum of δ18O. During the measurement period, 21 synoptically caused precipitation events caused 60 % of the total annual precipitation, whereas the remaining 40 % were predominantly attributed to diamond dust. By combining the synoptic analyses with 5-day back-trajectories, the moisture source regions for precipitation events were estimated. An average source region around a latitude of 55◦ S was found. The atmospheric conditions in the source region were used as initial conditions for running a Rayleigh-type isotopic model in order to reproduce the measured isotopic composition of fresh snow and to investigate the influence of the precipitation source region on the isotope ratios. The model represents the measured annual cycle of δ18O and the second-order isotopic parameter deuterium excess reasonably well, but yields on average too little fractionation along the transport/cooling path. While simulations with an isotopic general circulation model (GCM) (ECHAM5-wiso) for Dome Fuji are on average closer to the observations, this model cannot reproduce the annual cycle of deuterium excess. In the event-based analysis, no evidence of a correlation of the measured deuterium excess with the latitude of the moisture source region or the corresponding conditions was identified. Contrary to the assumption used for decades in ice core studies, a more northerly moisture source does not necessarily mean a larger temperature difference between source area and deposition site, thus a more depleted precipitation in heavy isotopes with a higher deuterium excess.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 14
    facet.materialart.
    Unbekannt
    Copernicus Publications
    In:  EPIC3Geoscientific Model Development, Copernicus Publications, 16(17), pp. 5153-5178, ISSN: 1991-959X
    Publikationsdatum: 2023-09-19
    Beschreibung: Numerical simulations employing prognostic sta- ble water isotopes can not only facilitate our understanding of hydrological processes and climate change but also al- low for a direct comparison between isotope signals obtained from models and various archives. In the current work, we describe the performance and explore the potential of a new version of the Earth system model AWI-ESM (Alfred We- gener Institute Earth System Model), labeled AWI-ESM-2.1- wiso, in which we incorporated three isotope tracers into all relevant components of the water cycle. We present here the results of pre-industrial (PI) and mid-Holocene (MH) simula- tions. The model reproduces the observed PI isotope compo- sitions in both precipitation and seawater well and captures their major differences from the MH conditions. The sim- ulated relationship between the isotope composition in precipitation (d18Op) and surface air temperature is very similar between the PI and MH conditions, and it is largely consis- tent with modern observations despite some regional model biases. The ratio of the MH–PI difference in δ18Op to the MH–PI difference in surface air temperature is comparable to proxy records over Greenland and Antarctica only when summertime air temperature is considered. An amount effect is evident over the North African monsoon domain, where a negative correlation between δ18Op and the amount of pre- cipitation is simulated. As an example of model applications, we studied the onset and withdrawal date of the MH West African summer monsoon (WASM) using daily variables. We find that defining the WASM onset based on precipitation alone may yield erroneous results due to the substantial daily variations in precipitation, which may obscure the dis- tinction between pre-monsoon and monsoon seasons. Com- bining precipitation and isotope indicators, we suggest in this work a novel method for identifying the commencement of the WASM. Moreover, we do not find an obvious difference between the MH and PI periods in terms of the mean onset of the WASM. However, an advancement in the WASM with- drawal is found in the MH compared to the PI period due to an earlier decline in insolation over the northern location of Intertropical Convergence Zone (ITCZ).
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 15
    facet.materialart.
    Unbekannt
    Copernicus Publications
    In:  EPIC3Climate of the Past, Copernicus Publications, 19(6), pp. 1275-1294, ISSN: 1814-9324
    Publikationsdatum: 2023-09-19
    Beschreibung: table water isotopes in polar ice cores are widely used to reconstruct past temperature variations over several orbital climatic cycles. One way to calibrate the isotope– temperature relationship is to apply the present-day spatial relationship as a surrogate for the temporal one. However, this method leads to large uncertainties because several fac- tors like the sea surface conditions or the origin and transport of water vapor influence the isotope–temperature temporal slope. In this study, we investigate how the sea surface tem- perature (SST), the sea ice extent, and the strength of the Atlantic Meridional Overturning Circulation (AMOC) affect these temporal slopes in Greenland and Antarctica for Last Glacial Maximum (LGM, ∼ 21 000 years ago) to preindus- trial climate change. For that, we use the isotope-enabled at- mosphere climate model ECHAM6-wiso, forced with a set of sea surface boundary condition datasets based on recon- structions (e.g., GLOMAP) or MIROC 4m simulation out- puts. We found that the isotope–temperature temporal slopes in East Antarctic coastal areas are mainly controlled by the sea ice extent, while the sea surface temperature cooling af- fects the temporal slope values inland more. On the other hand, ECHAM6-wiso simulates the impact of sea ice extent on the EPICA Dome C (EDC) and Vostok sites through the contribution of water vapor from lower latitudes. Effects of sea surface boundary condition changes on modeled isotope-emperature temporal slopes are variable in West Antarctica. This is partly due to the transport of water vapor from the Southern Ocean to this area that can dampen the influence of local temperature on the changes in the isotopic compo- sition of precipitation and snow. In the Greenland area, the isotope–temperature temporal slopes are influenced by the sea surface temperatures near the coasts of the continent. The greater the LGM cooling off the coast of southeastern Green- land, the greater the transport of water vapor from the North Atlantic, and the larger the temporal slopes. The presence or absence of sea ice very near the coast has a large influ- ence in Baffin Bay and the Greenland Sea and influences the slopes at some inland ice core stations. The extent of the sea ice far south slightly influences the temporal slopes in Greenland through the transport of more depleted water vapor from lower latitudes to this area. The seasonal vari- ations of sea ice distribution, especially its retreat in sum- mer, influence the isotopic composition of the water vapor in this region and the modeled isotope–temperature tempo- ral slopes in the eastern part of Greenland. A stronger LGM AMOC decreases LGM-to-preindustrial isotopic anomalies in precipitation in Greenland, degrading the isotopic model– data agreement. The AMOC strength modifies the temporal slopes over inner Greenland slightly and by a little on the coasts along the Greenland Sea where the changes in surface temperature and sea ice distribution due to the AMOC strength mainly occur.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 16
    Publikationsdatum: 2023-03-16
    Beschreibung: The incorporation of water isotopologues into the hydrology of general circulation models (GCMs) facilitates the comparison between modeled and measured proxy data in paleoclimate archives. However, the variability and drivers of measured and modeled water isotopologues, as well as the diversity of their representation in different models, are not well constrained. Improving our understanding of this variability in past and present climates will help to better constrain future climate change projections and decrease their range of uncertainty. Speleothems are a precisely datable terrestrial paleoclimate archives and provide well-preserved (semi-)continuous multivariate isotope time series in the lower latitudes and mid-latitudes and are therefore well suited to assess climate and isotope variability on decadal and longer timescales. However, the relationships of speleothem oxygen and carbon isotopes to climate variables are influenced by site-specific parameters, and their comparison to GCMs is not always straightforward. Here we compare speleothem oxygen and carbon isotopic signatures from the Speleothem Isotopes Synthesis and Analysis database version 2 (SISALv2) to the output of five different water-isotope-enabled GCMs (ECHAM5-wiso, GISSE2-R, iCESM, iHadCM3, and isoGSM) over the last millennium (850–1850 CE). We systematically evaluate differences and commonalities between the standardized model simulation outputs. The goal is to distinguish climatic drivers of variability for modeled isotopes and compare them to those of measured isotopes. We find strong regional differences in the oxygen isotope signatures between models that can partly be attributed to differences in modeled surface temperature. At low latitudes, precipitation amount is the dominant driver for stable water isotope variability; however, at cave locations the agreement between modeled temperature variability is higher than for precipitation variability. While modeled isotopic signatures at cave locations exhibited extreme events coinciding with changes in volcanic and solar forcing, such fingerprints are not apparent in the speleothem isotopes. This may be attributed to the lower temporal resolution of speleothem records compared to the events that are to be detected. Using spectral analysis, we can show that all models underestimate decadal and longer variability compared to speleothems (albeit to varying extents). We found that no model excels in all analyzed comparisons, although some perform better than the others in either mean or variability. Therefore, we advise a multi-model approach whenever comparing proxy data to modeled data. Considering karst and cave internal processes, e.g., through isotope-enabled karst models, may alter the variability in speleothem isotopes and play an important role in determining the most appropriate model. By exploring new ways of analyzing the relationship between the oxygen and carbon isotopes, their variability, and co-variability across timescales, we provide methods that may serve as a baseline for future studies with different models using, e.g., different isotopes, different climate archives, or different time periods.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 17
    Publikationsdatum: 2023-10-19
    Beschreibung: The EPICA Dome C (EDC) ice core provides the longest continuous climatic record, covering the last 800 000 years (800 kyr). A unique opportunity to investigate decadal to millennial variability during past glacial and interglacial periods is provided by the high-resolution water isotopic record (δ18O and δD) available for the EDC ice core. We present here a continuous compilation of the EDC water isotopic record at a sample resolution of 11 cm, which consists of 27000 δ18O measurements and 7920 δD measurements (covering, respectively, 94 % and 27 % of the whole EDC record), including published and new measurements (2900 for both δ18O and δD) for the last 800kyr. Here, we demonstrate that repeated water isotope measurements of the same EDC samples from different depth intervals obtained using different analytical methods are comparable within analytical uncertainty. We thus combine all available EDC water isotope measurements to generate a high-resolution (11 cm) dataset for the past 800 kyr. A frequency decomposition of the most complete δ18O record and a simple assessment of the possible influence of diffusion on the measured profile shows that the variability at the multidecadal to multi-centennial timescale is higher during glacial than during interglacial periods and higher during early interglacial isotopic maxima than during the Holocene. This analysis shows as well that during interglacial periods characterized by a temperature optimum at the beginning, the multi-centennial variability is strongest over this temperature optimum.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , peerRev
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 18
    facet.materialart.
    Unbekannt
    Copernicus Publications
    In:  EPIC3Climate of the Past, Copernicus Publications, 19(11), pp. 2157-2175, ISSN: 1814-9324
    Publikationsdatum: 2023-11-20
    Beschreibung: In order to quantify the relative importance of individual boundary conditions and forcings, including greenhouse gases, ice sheets, and Earth’s orbital parameters, on determining Last Glacial Maximum (LGM) climate, we have performed a series of LGM experiments using a state-of-the-art climate model AWI-ESM, in which different combinations of boundary conditions and forcings have been applied following the protocol of Paleoclimate Modelling Intercomparison Project phase 4 (PMIP4). In good agreement with observational proxy records, a general colder and drier climate is simulated in our full-forced LGM experiment as compared to the present-day simulation. Our simulated results from non-full-forced sensitivity simulations reveal that both the greenhouse gases and ice sheets play a major role in defining the anomalous LGM surface temperature compared to today. Decreased greenhouse gases in LGM as compared to present day leads to a non-uniform global cooling with polar amplification effect. The presence of LGM ice sheets favors a warming over the Arctic and northern Atlantic oceans in boreal winter, as well as a cooling over regions with the presence of ice sheets. The former is induced by a strengthening in the Atlantic meridional overturning circulation (AMOC) transporting more heat to high latitudes, whilst the latter is due to the increased surface albedo and elevation of ice sheets. We find that the Northern Hemisphere monsoon precipitation is influenced by the opposing effects of LGM greenhouse gases and ice sheets. Specifically, the presence of ice sheets leads to significant drying in the Northern Hemisphere monsoon regions, while a reduction in greenhouse gases results in increased monsoon rainfall. Based on our model results, continental ice sheets exert a major control on atmospheric dynamics and the variability of El Niño–Southern Oscillation (ENSO). Moreover, our analysis also implies a nonlinearity in climate response to LGM boundary conditions and forcings.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...