GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Online-Ressource
    Online-Ressource
    Newark :John Wiley & Sons, Incorporated,
    Schlagwort(e): Polysaccharides-Industrial applications. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (800 pages)
    Ausgabe: 1st ed.
    ISBN: 9781119711391
    Sprache: Englisch
    Anmerkung: Cover -- Half-Title Page -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- 1 Natural Polysaccharides From Aloe vera L. Gel (Aloe barbadensis Miller): Processing Techniques and Analytical Methods -- 1.1 Introduction -- 1.1.1 Gel Composition from A. vera -- 1.2 Applications of A. vera Mucilaginous Gel or Fractions -- 1.3 Aloe vera Gel Processing -- 1.3.1 Obtaining Polysaccharide Fraction or Acemannan -- 1.4 Analytical Methods Applied -- 1.4.1 Total Carbohydrates, Oligosaccharides, Acemannan and Free Sugars -- 1.4.2 Analytical Techniques -- 1.4.2.1 Chromatography Analysis -- 1.4.2.2 Infrared Spectroscopy (IR) -- 1.4.2.3 Nuclear Magnetic Resonance Spectroscopy -- 1.4.2.4 Mass Spectrometry -- 1.4.2.5 Ultraviolet-Visible Spectroscopy -- 1.4.2.6 Comprehensive Microarray Polymer Profiling -- 1.5 Conclusion -- References -- 2 Cell Wall Polysaccharides -- 2.1 Introduction to Cell Wall -- 2.2 Plant Cell Wall Polysaccharides -- 2.2.1 Cellulose -- 2.2.2 Hemicellulose -- 2.2.2.1 Xyloglucan -- 2.2.2.2 Xylans -- 2.2.2.3 Mannans -- 2.2.3 Callose -- 2.2.4 Pectic Polysaccharides -- 2.2.4.1 Homogalacturonan (HG) -- 2.2.4.2 Arabinan -- 2.3 Algal Cell Wall Polysaccharides -- 2.3.1 Alginates -- 2.3.2 Sulfated Galactans -- 2.3.3 Fucoidans -- 2.4 Fungal Cell Wall Polysaccharides -- 2.4.1 Glucan -- 2.4.2 Chitin and Chitosan -- 2.5 Bacterial Cell Wall Polysaccharides -- 2.5.1 Peptidoglycan -- 2.5.2 Lipopolysaccharides -- References -- 3 Marine Polysaccharides: Properties and Applications -- 3.1 Introduction -- 3.2 Polysaccharide Origins -- 3.3 Properties -- 3.3.1 Cellulose -- 3.3.2 Chitosan -- 3.3.3 Alginate -- 3.3.4 Carrageenan -- 3.3.5 Agar -- 3.3.6 Porphyran -- 3.3.7 Fucoidan -- 3.3.8 Ulvan -- 3.3.9 Exopolysaccharides From Microalgae -- 3.4 Applications of Polysaccharides -- 3.4.1 Biomedical Applications -- 3.4.1.1 Cellulose -- 3.4.1.2 Chitosan. , 3.4.1.3 Alginate -- 3.4.2 Food Applications -- 3.4.2.1 Cellulose -- 3.4.2.2 Chitosan -- 3.4.2.3 Alginates -- 3.4.2.4 Carrageenan -- 3.4.2.5 Agar -- 3.4.3 Pharmaceutical and Nutraceutical Applications -- 3.4.3.1 Cellulose -- 3.4.3.2 Chitosan -- 3.4.3.3 Alginate -- 3.4.3.4 Carrageenan -- 3.4.3.5 Porphyran -- 3.4.3.6 Fucoidan -- 3.4.4 Agriculture -- 3.5 Conclusions -- References -- 4 Seaweed Polysaccharides: Structure, Extraction and Applications -- 4.1 Introduction -- 4.1.1 Agar -- 4.1.2 Carrageenan -- 4.1.3 Alginate (Alginic Acid, Algin) -- 4.1.4 Fucoidan -- 4.1.5 Laminaran -- 4.1.6 Ulvan -- 4.2 Conclusion -- References -- 5 Agars: Properties and Applications -- 5.1 History and Origin of Agar -- 5.1.1 Agarophytes Used in Agar Manufacturing -- 5.2 Physical Properties of Agar Producing Seaweeds -- 5.3 Agar Manufacturing -- 5.3.1 Types of Agar Manufacturing -- 5.3.1.1 Freeze-Thaw Method -- 5.3.1.2 Syneresis Method -- 5.4 Structure of Agar -- 5.5 Heterogeneity of Agar -- 5.6 Physico-Chemical Characteristics of Agar -- 5.7 Chemical Characteristics of Agar -- 5.8 Factors Influencing the Characteristics of Agar -- 5.8.1 Techniques to Analyze the Fine Chemical Structure of Agar -- 5.8.2 Synergies and Antagonisms of Agar Gels -- 5.9 Uses of Agar in Various Sectors -- 5.9.1 Applications of Agar in Food Industry -- 5.9.2 Application of Agar in Harvesting Insects and Worms -- 5.9.3 Vegetable Tissue Culture Formulations -- 5.9.4 Culture Media for Microbes -- 5.9.5 Industrial Applications of Agar -- 5.10 Conclusion and Discussion -- References -- 6 Biopolysaccharides: Properties and Applications -- 6.1 Structure and Classification of Biopolysaccharides -- 6.1.1 Structure -- 6.1.2 Classification -- 6.1.3 Structural Characterization Techniques -- 6.2 Uses and Applications of Biopolysaccharides -- 6.2.1 Functional Fibers -- 6.2.2 Biomedicine. , 6.2.2.1 Tissue Engineering -- 6.2.2.2 Wound Healing -- 6.2.2.3 Drug Loading and Delivery -- 6.2.2.4 Therapeutics -- 6.2.3 Cosmetics -- 6.2.4 Foods and Food Ingredients -- 6.2.5 Biofuels -- 6.2.6 Wastewater Treatment -- 6.2.7 Textiles -- 6.3 Conclusion -- References -- 7 Chitosan Derivatives: Properties and Applications -- 7.1 Introduction -- 7.2 Properties of Chitosan Derivatives -- 7.2.1 Physiochemical Properties -- 7.2.2 Functional Properties -- 7.2.3 Biological Properties of Chitosan -- 7.3 Applications of Chitosan Derivatives -- 7.3.1 Anticancer Agents -- 7.3.2 Bone Tissue Material Formation -- 7.3.3 Wound Healing, Tissue Regeneration and Antimicrobial Resistance -- 7.3.4 Drug Delivery -- 7.3.5 Chromatographic Separations -- 7.3.6 Waste Management -- 7.3.7 Food Industry -- 7.3.8 In Cosmetics -- 7.3.9 In Paint as Antifouling Coatings -- 7.4 Conclusions -- Acknowledgement -- References -- 8 Green Seaweed Polysaccharides Inventory of Nador Lagoon in North East Morocco -- 8.1 Introduction -- 8.2 Nador Lagoon: Situation and Characteristics -- 8.3 Seaweed -- 8.4 Polysaccharides in Seaweed -- 8.5 Algae Polysaccharides in Nador Lagoon's Seaweed -- 8.5.1 C. prolifera -- 8.5.1.1 Sulfated Galactans -- 8.5.2 U. rigida & -- E. intestinalis -- 8.5.2.1 Ulvan -- 8.5.3 C. adhaerens, C. bursa, C. tomentosum -- 8.5.3.1 Sulfated Arabinans -- 8.5.3.2 Sulfated Arabinogalactans -- 8.5.3.3 Mannans -- 8.6 Conclusion -- References -- 9 Salep Glucomannan: Properties and Applications -- 9.1 Introduction -- 9.2 Production -- 9.3 Composition and Physicochemical Structure -- 9.4 Rheological Properties -- 9.5 Purification and Deacetylation -- 9.6 Food Applications -- 9.6.1 Beverage -- 9.6.2 Ice Cream and Emulsion Stabilizing -- 9.6.3 Edible Film/Coating -- 9.6.4 Gelation -- 9.7 Health Benefits -- 9.8 Conclusions and Future Trends -- References. , 10 Exudate Tree Gums: Properties and Applications -- 10.1 Introduction -- 10.1.1 Gum Arabic -- 10.1.2 Gum Karaya -- 10.1.3 Gum Kondagogu -- 10.1.4 Gum Ghatti -- 10.1.5 Gum Tragacanth -- 10.1.6 Gum Olibanum -- 10.2 Nanobiotechnology Applications -- 10.3 Minor Tree Gums -- 10.4 Conclusions -- Acknowledgment -- References -- 11 Cellulose and its Derivatives: Properties and Applications -- 11.1 Introduction -- 11.2 Main Raw Materials -- 11.3 Composition and Chemical Structure of Lignocellulosic Materials -- 11.4 Cellulose: Chemical Backbone and Crystalline Formats -- 11.5 Cellulose Extraction -- 11.5.1 Mechanical Methods -- 11.5.2 Chemical Methods -- 11.6 Cellulose Products and its Derivatives -- 11.7 Main Applications -- 11.8 Conclusion -- References -- 12 Starch and its Derivatives: Properties and Applications -- 12.1 Introduction -- 12.2 Physicochemical and Functional Properties of Starch -- 12.2.1 Size, Morphology and Crystallinity of Starch Granules -- 12.2.2 Physical Properties due to Associated Lipids, Proteins and Phosphorus With Starch Granules -- 12.2.3 Solubility and Swelling Capacity of Starch -- 12.2.4 Gelatinization and Retrogradation of Starch -- 12.2.5 Birefringence and Glass Transition Temperature of Starch -- 12.2.6 Rheological and Thermal Properties of Starch -- 12.2.7 Transmittance and Opacity of Starch -- 12.2.8 Melt Processability of Starch -- 12.3 Modification of Starch -- 12.3.1 Physical Modification of Starch -- 12.3.2 Chemical Modification of Starch -- 12.3.3 Dual Modification of Starch -- 12.3.4 Enzymatic Modification of Starch -- 12.3.5 Genetic Modification of Starch -- 12.4 Application of Starch and its Derivatives -- 12.4.1 In Food Industry -- 12.4.2 In Paper Industry -- 12.4.3 Starch as Binders -- 12.4.4 In Detergent Products -- 12.4.5 As Biodegradable Thermoplastic Materials or Bioplastics. , 12.4.6 In Pharmaceutical and Cosmetic Industries -- 12.4.7 As Industrial Raw Materials -- 12.4.8 As Adsorbents for Environmental Applications -- 12.4.9 As Food Packaging Materials -- 12.4.10 In Drug Delivery -- 12.4.11 As Antimicrobial Films and Coatings -- 12.4.12 In Advanced Functional Materials -- 12.5 Conclusion -- References -- 13 Crystallization of Polysaccharides -- 13.1 Introduction -- 13.2 Principles of Crystallization of Polysaccharides -- 13.3 Techniques for Crystallinity Measurement -- 13.4 Crystallization Behavior of Polysaccharides -- 13.4.1 Cellulose -- 13.4.2 Chitosan and Chitin -- 13.4.3 Starch -- 13.5 Polymer/Polysaccharide Crystalline Nanocomposites -- 13.6 Conclusion -- References -- 14 Polysaccharides as Novel Materials for Tissue Engineering Applications -- 14.1 Introduction -- 14.2 Types of Scaffolds for Tissue Engineering -- 14.3 Biomaterials for Tissue Engineering -- 14.4 Polysaccharide-Based Scaffolds for Tissue Engineering -- 14.4.1 Alginate-Based Scaffolds -- 14.4.2 Chitosan-Based Scaffolds -- 14.4.3 Cellulose-Based Scaffolds -- 14.4.4 Dextran and Pullulan-Based Scaffolds -- 14.4.5 Starch-Based Scaffolds -- 14.4.6 Xanthan-Based Scaffolds -- 14.4.7 Glycosaminoglycans-Based Scaffolds -- 14.5 Current Challenges and Future Perspectives -- Acknowledgements -- References -- 15 Structure and Solubility of Polysaccharides -- 15.1 Introduction -- 15.2 Polysaccharide Structure and Solubility in Water -- 15.3 Solubility and Molecular Weight -- 15.4 Solubility and Branching -- 15.5 Polysaccharide Solutions -- 15.6 Conclusions -- Acknowledgments -- References -- 16 Polysaccharides: An Efficient Tool for Fabrication of Carbon Nanomaterials -- 16.1 Introduction -- 16.2 Aerogels -- 16.2.1 Plant and Bacterial Cellulose -- 16.2.2 Carbon Derived From Nanocrystalline Cellulose of Plant Origin. , 16.2.3 Carbon Aerogels Produced From Bacterial Cellulose.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    Newark :John Wiley & Sons, Incorporated,
    Schlagwort(e): Nanostructured materials. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (491 pages)
    Ausgabe: 1st ed.
    ISBN: 9781119651161
    Sprache: Englisch
    Anmerkung: Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Application of MOFs and Their Derived Materials in Sensors -- 1.1 Introduction -- 1.2 Application of MOFs and Their Derived Materials in Sensors -- 1.2.1 Optical Sensor -- 1.2.1.1 Colorimetric Sensor -- 1.2.1.2 Fluorescence Sensor -- 1.2.1.3 Chemiluminescent Sensor -- 1.2.2 Electrochemical Sensor -- 1.2.2.1 Amperometric Sensor -- 1.2.2.2 Impedimetric, Electrochemiluminescence, and Photoelectrochemical Sensor -- 1.2.3 Field-Effect Transistor Sensor -- 1.2.4 Mass-Sensitive Sensor -- 1.3 Conclusion -- Acknowledgments -- References -- Chapter 2 Applications of Metal-Organic Frameworks (MOFs) and Their Derivatives in Piezo/Ferroelectrics -- 2.1 Introduction -- 2.1.1 Brief Introduction to Piezo/Ferroelectricity -- 2.2 Fundamentals of Piezo/Ferroelectricity -- 2.3 Metal-Organic Frameworks for Piezo/ Ferroelectricity -- 2.4 Ferro/Piezoelectric Behavior of Various MOFs -- 2.5 Conclusion -- References -- Chapter 3 Fabrication and Functionalization Strategies of MOFs and Their Derived Materials "MOF Architecture" -- 3.1 Introduction -- 3.2 Fabrication and Functionalization of MOFs -- 3.2.1 Metal Nodes -- 3.2.2 Organic Linkers -- 3.2.3 Secondary Building Units -- 3.2.4 Synthesis Methods -- 3.2.4.1 Hydrothermal and Solvothermal Method -- 3.2.4.2 Microwave Synthesis -- 3.2.4.3 Electrochemical Method -- 3.2.4.4 Mechanochemical Synthesis -- 3.2.4.5 Sonochemical (Ultrasonic Assisted) Method -- 3.2.4.6 Diffusion Method -- 3.2.4.7 Template Method -- 3.2.5 Synthesis Strategies -- 3.3 MOF Derived Materials -- 3.4 Conclusion -- References -- Chapter 4 Application of MOFs and Their Derived Materials in Molecular Transport -- 4.1 Introduction -- 4.2 MOFs as Nanocarriers for Membrane Transport -- 4.2.1 MIL-89 -- 4.2.2 MIL-88A -- 4.2.3 MIL-100 -- 4.2.4 MIL-101 -- 4.2.5 MIL-53 -- 4.2.6 ZIF-8. , 4.2.7 Zn-TATAT -- 4.2.8 BioMOF-1 (Zn) -- 4.2.9 UiO (Zr) -- 4.3 Conclusion -- References -- Chapter 5 Role of MOFs as Electro/-Organic Catalysts -- 5.1 What Is MOFs -- 5.2 MOFs as Electrocatalyst in Sensing Applications -- 5.3 MOFs as Organic Catalysts in Organic Transformations -- 5.4 Conclusion and Future Prospects -- References -- Chapter 6 Application of MOFs and Their Derived Materials in Batteries -- 6.1 Introduction -- 6.2 Metal-Organic Frameworks -- 6.2.1 Classification and Properties of Metal-Organic Frameworks -- 6.2.2 Potential Applications of MOFs -- 6.2.3 Synthesis of MOFs -- 6.3 Polymer Electrolytes -- 6.3.1 Historical Perspectives and Classification of Polymer Electrolytes -- 6.3.2 MOF Based Polymer Electrolytes -- 6.4 Ionic Liquids -- 6.4.1 Properties of Ionic Liquids -- 6.4.2 Ionic Liquid Incorporated MOF -- 6.5 Ion Transport in Polymer Electrolytes -- 6.5.1 General Description of Ionic Conductivity -- 6.5.2 Models for Ionic Transport in Polymer Electrolytes -- 6.5.3 Impedance Spectroscopy and Ionic Conductivity Measurements -- 6.5.4 Concept of Mismatch and Relaxation -- 6.5.5 Scaling of ac Conductivity -- 6.6 IL Incorporated MOF Based Composite Polymer Electrolytes -- 6.7 Conclusion and Perspectives -- References -- Chapter 7 Fine Chemical Synthesis Using Metal-Organic Frameworks as Catalysts -- 7.1 Introduction -- 7.2 Oxidation Reaction -- 7.2.1 Epoxidation -- 7.2.2 Sulfoxidation -- 7.2.3 Aerobic Oxidation of Alcohols -- 7.3 1,3-Dipolar Cycloaddition Reaction -- 7.4 Transesterification Reaction -- 7.5 C-C Bond Formation Reactions -- 7.5.1 Heck Reactions -- 7.5.2 Sonogashira Coupling -- 7.5.3 Suzuki Coupling -- 7.6 Conclusion -- References -- Chapter 8 Application of Metal Organic Framework and Derived Material in Hydrogenation Catalysis -- 8.1 Introduction -- 8.1.1 The Active Centers in Parent MOF Materials. , 8.1.2 The Active Centers in MOF Catalyst -- 8.1.3 Metal Nodes -- 8.2 Hydrogenation Reactions -- 8.2.1 Hydrogenation of Alpha-Beta Unsaturated Aldehyde -- 8.2.2 Hydrogenation of Cinnamaldehyde -- 8.2.3 Hydrogenation of Nitroarene -- 8.2.4 Hydrogenation of Nitro Compounds -- 8.2.5 Hydrogenation of Benzene -- 8.2.6 Hydrogenation of Quinoline -- 8.2.7 Hydrogenation of Carbon Dioxide -- 8.2.8 Hydrogenation of Aromatics -- 8.2.9 Hydrogenation of Levulinic Acid -- 8.2.10 Hydrogenation of Alkenes and Alkynes -- 8.2.11 Hydrogenation of Phenol -- 8.3 Conclusion -- References -- Chapter 9 Application of MOFs and Their Derived Materials in Solid-Phase Extraction -- 9.1 Solid-Phase Extraction -- 9.1.1 Materials in SPE -- 9.2 MOFs and COFs in Miniaturized Solid-Phase Extraction (µSPE) -- 9.3 MOFs and COFs in Miniaturized Dispersive Solid-Phase Extraction (D-µSPE) -- 9.4 MOFs and COFs in Magnetic-Assisted Miniaturized Dispersive Solid-Phase Extraction (m-D-µSPE) -- 9.5 Concluding Remarks -- Acknowledgments -- References -- Chapter 10 Anticancer and Antimicrobial MOFs and Their Derived Materials -- 10.1 Introduction -- 10.2 Anticancer MOFs -- 10.2.1 MOFs as Drug Carriers -- 10.2.2 MOFs in Phototherapy -- 10.3 Antibacterial MOFs -- 10.4 Antifungal MOFs -- References -- Chapter 11 Theoretical Investigation of Metal-Organic Frameworks and Their Derived Materials for the Adsorption of Pharmaceutical and Pe -- 11.1 Introduction -- 11.2 General Synthesis Routes -- 11.2.1 Hydrothermal Synthesis -- 11.2.2 Solvothermal Synthesis of MOFs -- 11.2.3 Room Temperature Synthesis -- 11.2.4 Microwave Assisted Synthesis -- 11.2.5 Mechanochemical Synthesis -- 11.2.6 Electrochemical Synthesis -- 11.3 Postsynthetic Modification in MOF -- 11.4 Computational Method -- 11.5 Results and Discussion. , 11.5.1 Binding Behavior Between MIL-100 With the Adsorbates (Diclofenac, Ibuprofen, Naproxen, and Oxybenzone) -- 11.6 Conclusion -- References -- Chapter 12 Metal-Organic Frameworks and Their Hybrid Composites for Adsorption of Volatile Organic Compounds -- 12.1 Introduction -- 12.2 VOCs and Their Potential Hazards -- 12.2.1 Other Sources of VOCs -- 12.3 VOCs Removal Techniques -- 12.4 Fabricated MOF for VOC Removal -- 12.4.1 MIL Series MOFs -- 12.4.2 Isoreticular MOFs -- 12.4.2.1 Adsorption Comparison of the Isoreticular MOFs -- 12.4.3 NENU Series MOFs -- 12.4.4 MOF-5, Eu-MOF, and MOF-199 -- 12.4.5 Amine-Impregnated MIL-100 -- 12.4.6 Biodegradable MOFs MIL-88 Series -- 12.4.7 Catalytic MOFs -- 12.4.8 Photo-Degradating MOFs -- 12.4.9 Some Other Studied MOFs -- 12.5 MOF Composites -- 12.5.1 MIL-101 Composite With Graphene Oxide -- 12.5.2 MIL-101 Composite With Graphite Oxide -- 12.6 Generalization Adsorptive Removal of VOCs by MOFs -- 12.7 Simple Modeling the Adsorption -- 12.7.1 Thermodynamic Parameters -- 12.7.2 Dynamic Sorption Methods -- 12.8 Factor Affecting VOCs Adsorption -- 12.8.1 Breathing Phenomena -- 12.8.2 Activation of MOFs -- 12.8.3 Applied Pressure -- 12.8.4 Relative Humidity -- 12.8.5 Breakthrough Conditions -- 12.8.6 Functional Group of MOFs -- 12.8.7 Concentration, Molecular Size, and Type of VOCs -- 12.9 Future Perspective -- References -- Chapter 13 Application of Metal-Organic Framework and Their Derived Materials in Electrocatalysis -- List of Abbreviations -- 13.1 Introduction -- 13.2 Perspective Synthesis of MOF and Their Derived Materials -- 13.3 MOF for Hydrogen Evolution Reaction -- 13.4 MOF for Oxygen Evolution Reaction -- 13.5 MOF for Oxygen Reduction Reaction -- 13.6 MOF for CO2 Electrochemical Reduction Reaction -- 13.6.1 Electrosynthesis of MOF for CO2 Reduction -- 13.6.2 Composite Electrodes as MOF for CO2 Reduction. , 13.6.3 Continuous Flow Reduction of CO2 -- 13.6.4 CO2 Electrochemical Reduction in Ionic Liquid -- 13.7 MOF for Electrocatalytic Sensing -- 13.8 Electrocatalytic Features of MOF -- 13.9 Conclusion -- Acknowledgment -- References -- Chapter 14 Applications of MOFs and Their Composite Materials in LightDriven Redox Reactions -- 14.1 Introduction -- 14.1.1 MOFs as Photocatalysts -- 14.1.2 Charge Transfer Mechanisms -- 14.1.3 Methods of Synthesis -- 14.2 Pristine MOFs and Their Application in Photocatalysis -- 14.2.1 Group 4 Metallic Clusters -- 14.2.2 Groups 8, 9, and 10 Metallic Clusters -- 14.2.3 Group 11 Metallic Clusters -- 14.2.4 Group 12 Metallic Clusters -- 14.3 Metal Nanoparticles-MOF Composites and Their Application in Photocatalysis -- 14.3.1 Ag-MOF Composites -- 14.3.2 Au-MOF Composites -- 14.3.3 Cu-MOF Composites -- 14.3.4 Pd-MOF Composites -- 14.3.5 Pt-MOF Composites -- 14.4 Semiconductor-MOF Composites and Their Application in Photocatalysis -- 14.4.1 TiO2-MOF Composites -- 14.4.2 Graphitic Carbon Nitride-MOF Composites -- 14.4.3 Bismuth-Based Semiconductors -- 14.4.4 Reduced Graphene Oxide-MOF Composites -- 14.4.5 Silver-Based Semiconductors -- 14.4.6 Other Semiconductors -- 14.5 MOF-Based Multicomponent Composites and Their Application in Photocatalysis -- 14.5.1 Semiconductor-Semiconductor-MOF Composites -- 14.5.2 Semiconductor-Metal-MOF Composites -- 14.6 Conclusions -- References -- Index -- Also of Interest -- Check out these other forthcoming and published titles from Scrivener Publishing -- EULA.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Online-Ressource
    Online-Ressource
    Newark :John Wiley & Sons, Incorporated,
    Schlagwort(e): Layer structure (Solids). ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (403 pages)
    Ausgabe: 1st ed.
    ISBN: 9781119655206
    DDC: 620.11
    Sprache: Englisch
    Anmerkung: Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 2D Metal-Organic Frameworks -- 1.1 Introduction -- 1.2 Synthesis Approaches -- 1.2.1 Selection of Synthetic Raw Materials -- 1.2.2 Solvent Volatility Method -- 1.2.3 Diffusion Method -- 1.2.3.1 Gas Phase Diffusion -- 1.2.3.2 Liquid Phase Diffusion -- 1.2.4 Sol-Gel Method -- 1.2.5 Hydrothermal/Solvothermal Synthesis Method -- 1.2.6 Stripping Method -- 1.2.7 Microwave Synthesis Method -- 1.2.8 Self-Assembly -- 1.2.9 Special Interface Synthesis Method -- 1.2.10 Surfactant-Assisted Synthesis Method -- 1.2.11 Ultrasonic Synthesis -- 1.3 Structures, Properties, and Applications -- 1.3.1 Structure and Properties of MOFs -- 1.3.2 Application in Biomedicine -- 1.3.3 Application in Gas Storage -- 1.3.4 Application in Sensors -- 1.3.5 Application in Chemical Separation -- 1.3.6 Application in Catalysis -- 1.3.7 Application in Gas Adsorption -- 1.4 Summary and Outlook -- Acknowledgements -- References -- Chapter 2 2D Black Phosphorus -- 2.1 Introduction -- 2.2 The Research on Black Phosphorus -- 2.2.1 The Structure and Properties -- 2.2.1.1 The Structure of Black Phosphorus -- 2.2.1.2 The Properties of Black Phosphorus -- 2.2.2 Preparation Methods -- 2.2.2.1 Mechanical Exfoliation -- 2.2.2.2 Liquid-Phase Exfoliation -- 2.2.3 Antioxidant -- 2.2.3.1 Degradation Mechanism -- 2.2.3.2 Adding Protective Layer -- 2.2.3.3 Chemical Modification -- 2.2.3.4 Doping -- 2.3 Applications of Black Phosphorus -- 2.3.1 Electronic and Optoelectronic -- 2.3.1.1 Field-Effect Transistors -- 2.3.1.2 Photodetector -- 2.3.2 Energy Storage and Conversion -- 2.3.2.1 Catalysis -- 2.3.2.2 Batteries -- 2.3.2.3 Supercapacitor -- 2.3.3 Biomedical -- 2.4 Conclusion and Outlook -- Acknowledgements -- References -- Chapter 3 2D Metal Carbides -- 3.1 Introduction -- 3.2 Synthesis Approaches -- 3.2.1 Ti3C2 Synthesis. , 3.2.2 V2C Synthesis -- 3.2.3 Ti2C Synthesis -- 3.2.4 Mo2C Synthesis -- 3.3 Structures, Properties, and Applications -- 3.3.1 Structures and Properties of 2D Metal Carbides -- 3.3.1.1 Structures and Properties of Ti3C2 -- 3.3.1.2 Structural Properties of Ti2C -- 3.3.1.3 Structural Properties of Mo2C -- 3.3.1.4 Structural Properties of V2C -- 3.3.2 Carbide Materials in Energy Storage Applications -- 3.3.2.1 Ti3C2 -- 3.3.2.2 Ti2C -- 3.3.2.3 V2C -- 3.3.2.4 Mo2C -- 3.3.3 Metal Carbide Materials in Catalysis Applications -- 3.3.3.1 Ti3C2 -- 3.3.3.2 V2C -- 3.3.3.3 Mo2C -- 3.3.4 Metal Carbide Materials in Environmental Management Applications -- 3.3.4.1 Ti3C2 in Environmental Management Applications -- 3.3.4.2 Ti2C in Environmental Management Applications -- 3.3.4.3 V2C in Environmental Management Applications -- 3.3.4.4 Mo2C in Environmental Management Applications -- 3.3.5 Carbide Materials in Biomedicine Applications -- 3.3.5.1 Ti3C2 in Biomedicine Applications -- 3.3.5.2 Ti2C in Biomedicine Applications -- 3.3.5.3 V2C in Biomedicine Applications -- 3.3.5.4 Mo2C in Biomedicine Applications -- 3.3.6 Carbide Materials in Gas Sensing Applications -- 3.3.6.1 Ti3C2 in Gas Sensing Applications -- 3.3.6.2 Ti2C in Gas Sensing Applications -- 3.3.6.3 V2C in Gas Sensing Applications -- 3.3.6.4 Mo2C in Gas Sensing Applications -- 3.4 Summary and Outlook -- Acknowledgements -- References -- Chapter 4 2D Carbon Materials as Photocatalysts -- 4.1 Introduction -- 4.2 Carbon Nanostructured-Based Materials -- 4.2.1 Forms of Carbon -- 4.2.2 Synthesis of Carbon Nanostructured-Based Materials -- 4.3 Photo-Degradation of Organic Pollutants -- 4.3.1 Graphene, Graphene Oxide, Graphene Nitride (g-C3N4) -- 4.3.1.1 Graphene-Based Materials -- 4.3.1.2 Graphene Nitride (g-C3N4) -- 4.3.2 Carbon Dots (CDs) -- 4.3.3 Carbon Spheres (CSs). , 4.4 Carbon-Based Materials for Hydrogen Production -- 4.5 Carbon-Based Materials for CO2 Reduction -- References -- Chapter 5 Sensitivity Analysis of Surface Plasmon Resonance Biosensor Based on Heterostructure of 2D BlueP/MoS2 and MXene -- 5.1 Introduction -- 5.2 Proposed SPR Sensor, Design Considerations, and Modeling -- 5.2.1 SPR Sensor and Its Sensing Principle -- 5.2.2 Design Consideration -- 5.2.2.1 Layer 1: Prism for Light Coupling -- 5.2.2.2 Layer 2: Metal Layer -- 5.2.2.3 Layer 3: BlueP/MoS2 Layer -- 5.2.2.4 Layer 4: MXene (Ti3C2Tx) Layer as BRE for Biosensing -- 5.2.2.5 Layer 5: Sensing Medium (RI-1.33-1.335) -- 5.2.3 Proposed Sensor Modeling -- 5.3 Results Discussion -- 5.3.1 Role of Monolayer BlueP/MoS2 and MXene (Ti3C2Tx) and Its Comparison With Conventional SPR -- 5.3.2 Influence of Varying Heterostructure Layers for Proposed Design -- 5.3.3 Effect of Changing Prism Material and Metal on Performance of Proposed Design -- 5.4 Conclusion -- References -- Chapter 6 2D Perovskite Materials and Their Device Applications -- 6.1 Introduction -- 6.2 Structure -- 6.2.1 Crystal Structure -- 6.2.2 Electronic Structure of 2D Perovskites -- 6.2.3 Structure of Photovoltaic Cell -- 6.3 Discussion and Applications -- 6.4 Conclusion -- References -- Chapter 7 Introduction and Significant Parameters for Layered Materials -- 7.1 Graphene -- 7.2 Phosphorene -- orthorhombic rhombohedral Simple cubic -- semiconductor semimetal metal -- 7.3 Silicene -- 7.4 ZnO -- 7.5 Transition Metal Dichalcogenides (TMDCs) -- 7.6 Germanene and Stanene -- 7.7 Heterostructures -- References -- Chapter 8 Increment in Photocatalytic Activity of g-C3N4 Coupled Sulphides and Oxides for Environmental Remediation -- 8.1 Introduction -- 8.2 GCN Coupled Metal Sulphide Heterojunctions for Environment Remediation -- 8.2.1 GCN and MoS2-Based Photocatalysts. , 8.2.2 GCN and CdS-Based Heterojunctions -- 8.2.3 Some Other GCN Coupled Metal Sulphide Photocatalysts -- 8.3 GCN Coupled Metal Oxide Heterojunctions for Environment Remediation -- 8.3.1 GCN and MoO3-Based Heterojunctions -- 8.3.2 GCN and Fe2O3-Based Heterojunctions -- 8.3.3 Some Other GCN Coupled Metal Oxide Photocatalysts -- 8.4 Conclusions and Outlook -- References -- Chapter 9 2D Zeolites -- 9.1 Introduction -- 9.1.1 What is 2D Zeolite? -- 9.1.2 Advancement in Zeolites to 2D Zeolite -- 9.2 Synthetic Method -- 9.2.1 Bottom-Up Method -- 9.2.2 Top-Down Method -- 9.2.3 Support-Assisted Method -- 9.2.4 Post-Synthesis Modification of 2D Zeolites -- 9.3 Properties -- 9.4 Applications -- 9.4.1 Petro-Chemistry -- 9.4.2 Biomass Conversion -- 9.4.2.1 Pyrolysis of Solid Biomass -- 9.4.2.2 Condensation Reactions -- 9.4.2.3 Isomerization -- 9.4.2.4 Dehydration Reactions -- 9.4.3 Oxidation Reactions -- 9.4.4 Fine Chemical Synthesis -- 9.4.5 Organometallics -- 9.5 Conclusion -- References -- Chapter 10 2D Hollow Nanomaterials -- 10.1 Introduction -- 10.2 Structural Aspects of HNMs -- 10.3 Synthetic Approaches -- 10.3.1 Template-Based Strategies -- 10.3.1.1 Hard Templating -- 10.3.1.2 Soft Templating -- 10.3.2 Self-Templating Strategies -- 10.3.2.1 Surface Protected Etching -- 10.3.2.2 Ostwald Ripening -- 10.3.2.3 Kirkendall Effect -- 10.3.2.4 Galvanic Replacement -- 10.4 Medical Applications of HNMs -- 10.4.1 Imaging and Diagnosis Applications -- 10.4.2 Applications of Nanotube Arrays -- 10.4.2.1 Pharmacy and Medicine -- 10.4.2.2 Cancer Therapy -- 10.4.2.3 Immuno and Hyperthermia Therapy -- 10.4.2.4 Infection Therapy and Gene Therapy -- 10.4.3 Hollow Nanomaterials in Diagnostics and Therapeutics -- 10.4.4 Applications in Regenerative Medicine -- 10.4.5 Anti-Neurodegenerative Applications -- 10.4.6 Photothermal Therapy -- 10.4.7 Biosensors. , 10.5 Non-Medical Applications of HNMs -- 10.5.1 Catalytic Micro or Nanoreactors -- 10.5.2 Energy Storage -- 10.5.2.1 Lithium Ion Battery -- 10.5.2.2 Supercapacitor -- 10.5.3 Nanosensors -- 10.5.4 Wastewater Treatment -- 10.6 Toxicity of 2D HNMs -- 10.7 Future Challenges -- 10.8 Conclusion -- Acknowledgement -- References -- Chapter 11 2D Layered Double Hydroxides -- 11.1 Introduction -- 11.2 Structural Aspects -- 11.3 Synthesis of LDHs -- 11.3.1 Co-Precipitation Method -- 11.3.2 Urea Hydrolysis -- 11.3.3 Ion-Exchange Method -- 11.3.4 Reconstruction Method -- 11.3.5 Hydrothermal Method -- 11.3.6 Sol-Gel Method -- 11.4 Nonmedical Applications of LDH -- 11.4.1 Adsorbent -- 11.4.2 Catalyst -- 11.4.3 Sensors -- 11.4.4 Electrode -- 11.4.5 Polymer Additive -- 11.4.6 Anion Scavenger -- 11.4.7 Flame Retardant -- 11.5 Biomedical Applications -- 11.5.1 Biosensors -- 11.5.2 Scaffolds -- 11.5.3 Anti-Microbial Agents -- 11.5.4 Drug Delivery -- 11.5.5 Imaging -- 11.5.6 Protein Purification -- 11.5.7 Gene Delivery -- 11.6 Toxicity -- 11.7 Conclusion -- Acknowledgement -- References -- Chapter 12 Experimental Techniques for Layered Materials -- 12.1 Introduction -- 12.2 Methods for Synthesis of Graphene Layered Materials -- 12.3 Selection of a Suitable Metallic Substrate -- 12.4 Graphene Synthesis by HFTCVD -- 12.5 Graphene Transfer -- 12.6 Characterization Techniques -- 12.6.1 X-Ray Diffraction Technique -- d D k -- 12.6.2 Field Emission Scanning Electron Microscopy (FESEM) -- 12.6.3 Transmission Electron Microscopy (TEM) -- 12.6.4 Fourier Transform Infrared Radiation (FTIR) -- 12.6.5 UV-Visible Spectroscopy -- 12.6.6 Raman Spectroscopy -- 12.6.7 Low Energy Electron Microscopy (LEEM) -- 12.7 Potential Applications of Graphene and Derived Materials -- 12.8 Conclusion -- Acknowledgement -- References -- Chapter 13 Two-Dimensional Hexagonal Boron Nitride and Borophenes. , 13.1 Two-Dimensional Hexagonal Boron Nitride (2D h-BN): An Introduction.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Online-Ressource
    Online-Ressource
    Newark :John Wiley & Sons, Incorporated,
    Schlagwort(e): Geochemistry. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (208 pages)
    Ausgabe: 1st ed.
    ISBN: 9781119710080
    DDC: 551.9
    Sprache: Englisch
    Anmerkung: Cover -- Half-Title Page -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- 1 Toxic Geogenic Contaminants in Serpentinitic Geological Systems: Occurrence, Behavior, Exposure Pathways, and Human Health Risks -- 1.1 Introduction -- 1.2 Serpentinitic Geological Systems -- 1.2.1 Nature, Occurrence, and Geochemistry -- 1.2.2 Occurrence and Behavior of Toxic Contaminants -- 1.3 Human Exposure Pathways -- 1.3.1 Occupational Exposure -- 1.3.2 Non-Occupational Exposure Routes -- 1.4 Human Health Risks and Their Mitigation -- 1.4.1 Health Risks -- 1.4.2 Mitigating Human Exposure and Health Risks -- 1.5 Future Perspectives -- 1.6 Conclusions -- Acknowledgements -- References -- 2 Benefits of Geochemistry and Its Impact on Human Health -- 2.1 Introduction -- 2.2 General Overview of Geochemistry and Human Health -- 2.2.1 Types of Geochemistry -- 2.2.2 Some Beneficial Effect of Some Mineral With Health Benefits -- 2.2.3 Application of Geochemistry on Human Health -- 2.3 Conclusion and Recommendations -- References -- 3 Applications of Geochemistry in Livestock: Health and Nutritional Perspective -- 3.1 Introduction -- 3.2 General and Global Perspective About Geochemistry in Livestock -- 3.3 Types of Geochemistry and Their Numerous Benefits -- 3.3.1 Analytical Geochemistry -- 3.3.2 Isotope Geochemistry -- 3.3.3 Low Temperature Geochemistry -- 3.3.4 Organic and Petroleum Geochemistry -- 3.4 Application of Geochemistry in Livestock -- 3.5 Geochemistry and Animal Health -- 3.6 General Overview of Geochemistry in Livestock's Merits of Geochemistry/Essential Minerals in Livestocks -- 3.6.1 Specific Examples of Authors That Have Used Essential Minerals in Livestock -- 3.6.2 Livestock in Relation to Geominerals -- 3.6.3 Trace Minerals Parallel Importance in Livestock -- 3.6.4 Heavy Metals Impact Livestock -- 3.7 Conclusion and Recommendations. , References -- 4 Application in Geochemistry Toward the Achievement of a Sustainable Agricultural Science -- 4.1 Introduction -- 4.2 General Overview on the Utilization of Geochemistry and Their Wide Application on Agriculture -- 4.2.1 Classification -- 4.2.2 Chemical Composition of Rocks -- 4.2.3 Effect of Some Beneficial Minerals in Agriculture -- 4.2.4 Beneficial Mineral Nutrients That are Crucial to the Development of Plants -- 4.3 Role of Geochemistry in Agriculture -- 4.4 Geochemical Effects of Heavy Metals on Crops Health -- 4.5 Conclusion and Recommendations -- References -- 5 Geochemistry, Extent of Pollution, and Ecological Impact of Heavy Metal Pollutants in Soil -- 5.1 Introduction -- 5.2 Material and Methods -- 5.2.1 Review Process -- 5.2.2 Ecological Risk Index -- 5.3 Toxic Heavy Metal and Their Impact to the Ecosystems -- 5.3.1 Arsenic -- 5.3.2 Cadmium -- 5.3.3 Chromium -- 5.3.4 Copper -- 5.3.5 Lead -- 5.3.6 Nickel -- 5.3.7 Zinc -- 5.4 Metal Pollution in Soil Across the Globe -- 5.5 Ecological and Human Health Risk Impacts of Heavy Metals -- 5.6 Conclusion -- References -- 6 Isotope Geochemistry -- 6.1 Introduction -- 6.2 Basic Definitions -- 6.2.1 The Notation -- 6.2.2 The Fractionation Factor -- 6.2.3 Isotope Fractionation -- 6.2.4 Mass Dependent and Independent Fractionations -- 6.3 Application of Traditional Isotopes in Geochemistry -- 6.3.1 Geothermometer -- 6.3.2 Isotopes in Biological System -- 6.3.3 Isotopes in Archaeology -- 6.3.4 Isotopes in Fossils and the Earliest Life -- 6.3.5 Isotopes in Hydrothermal and Ore Deposits -- 6.4 Non-Traditional Isotopes in Geochemistry -- 6.4.1 Application in Tracing of Source -- 6.4.2 Application in Process Tracing -- 6.4.3 Biological Cycling -- 6.5 Conclusion -- References -- 7 Environmental Geochemistry -- 7.1 Introduction -- 7.2 Overview of the Environmental Geochemistry -- 7.3 Conclusions. , 7.4 Abbreviations -- Acknowledgment -- References -- 8 Medical Geochemistry -- 8.1 Introduction -- 8.2 The Evolution of Geochemistry -- 8.3 This Science has Expanded Considerably to Become Distinct Branches -- 8.3.1 Cosmochemistry -- 8.3.2 The Economic Importance of Geochemistry -- 8.3.3 Analytical Geochemistry -- 8.3.4 Geochemistry of Radioisotopes -- 8.3.5 Medical Geochemistry and Human Health -- 8.3.6 Environmental Health and Safety -- 8.4 Conclusion -- References -- 9 Inorganic Geochemistry -- 9.1 Introduction -- 9.2 Elements and the Earth -- 9.2.1 Iron -- 9.2.2 Oxygen -- 9.2.3 Silicon -- 9.2.4 Magnesium -- 9.3 Geological Minerals -- 9.3.1 Quartz -- 9.3.2 Feldspar -- 9.3.3 Amphibole -- 9.3.4 Pyroxene -- 9.3.5 Olivine -- 9.3.6 Clay Minerals -- 9.3.7 Kaolinite -- 9.3.8 Bentonite, Montmorillonite, Vermiculite, and Biotite -- 9.4 Characterization Techniques -- 9.4.1 Powder X-Ray Diffraction -- 9.4.2 X-Ray Fluorescence Spectra -- 9.4.3 X-Ray Photoelectron Spectra -- 9.4.4 Electron Probe Micro-Analysis -- 9.4.5 Inductively Coupled Plasma Spectrometry -- 9.4.6 Fourier Transform Infrared Spectroscopy -- 9.4.7 Scanning Electron Microscopy Analysis -- 9.4.8 Energy Dispersive X-Ray Analysis -- 9.5 Conclusion -- References -- 10 Introduction and Scope of Geochemistry -- 10.1 Introduction -- 10.1.1 Periodic Table and Electronic Configuration -- 10.2 Periodic Properties -- 10.2.1 Ionization Enthalpy -- 10.2.2 Electron Affinity -- 10.2.3 Electro-Negativity -- 10.3 Chemical Bonding -- 10.3.1 Ionic Bond -- 10.3.2 Covalent Bond -- 10.3.3 Metallic Bond -- 10.3.4 Hydrogen Bond -- 10.3.5 Van der Waals Forces -- 10.4 Geochemical Classification and Distribution of Elements -- 10.4.1 Lithophiles -- 10.4.2 Siderophiles -- 10.4.3 Chalcophiles -- 10.4.4 Atmophiles -- 10.4.5 Biophiles -- 10.5 Chemical Composition of the Earth -- 10.6 Classification of Earth's Layers. , 10.6.1 Based on Chemical Composition -- 10.6.2 Based on Physical Properties -- 10.7 Spheres of the Earth -- 10.7.1 Geosphere/Lithosphere -- 10.7.2 Hydrosphere -- 10.7.3 Biosphere -- 10.7.4 Atmosphere -- 10.7.5 Troposphere -- 10.7.6 Stratosphere -- 10.7.7 Mesosphere -- 10.7.8 Thermosphere and Ionosphere -- 10.7.9 Exosphere -- 10.8 Sub-Disciplines of Geochemistry -- 10.9 Scope of Geochemistry -- 10.10 Conclusion -- References -- Index -- EULA.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Online-Ressource
    Online-Ressource
    Newark :John Wiley & Sons, Incorporated,
    Schlagwort(e): Adhesives-Environmental aspects. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (300 pages)
    Ausgabe: 1st ed.
    ISBN: 9781119655084
    Sprache: Englisch
    Anmerkung: Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Anti-Adhesive Coatings: A Technique for Prevention of Bacterial Surface Fouling -- 1.1 Bacterial Surface Fouling (Biofouling) -- 1.2 Negative Effects of Biofouling by Bacteria on Practical Applications -- 1.3 Anti-Adhesive Coatings for Preventing Bacterial Surface Fouling -- 1.3.1 Hydrophilic Polymers -- 1.3.2 Zwitterionic Polymers -- 1.3.3 Super-Hydrophobic Polymers -- 1.3.4 Slippery Liquid Infused Porous Surfaces (SLIPS) -- 1.3.5 Protein and Glycoprotein-Based Coatings -- 1.4 Bifunctional Coatings With Anti-Adhesive and Antibacterial Properties -- 1.5 Concluding Remarks -- Acknowledgments -- References -- Chapter 2 Lignin-Based Adhesives -- 2.1 Introduction -- 2.2 Native Lignin and Source of Technical Lignin -- 2.2.1 Native Lignin -- 2.2.2 Technical Lignins -- 2.3 Limitations of Technical Lignins -- 2.3.1 Heterogeneity of Technical Lignins -- 2.3.2 Reactivity of Technical Lignins -- 2.4 Lignin Pre-Treatment/Modification for Adhesive Application -- 2.4.1 Physical Pre-Treatment -- 2.4.2 Chemical Modification -- 2.5 Challenges and Prospects -- 2.6 Conclusions -- References -- Chapter 3 Green Adhesive for Industrial Applications -- 3.1 Introduction -- 3.2 Advanced Green Adhesives Categories- Industrial Applications -- 3.2.1 Keta Spire Poly Etherether Ketone Powder Coating -- 3.2.2 Bio-Inspired Adhesive in Robotics Field Application -- 3.2.3 Bio-Inspired Synthetic Adhesive in Space Application -- 3.2.3.1 Micro Structured Dry Adhesive Fabrication for Space Application -- 3.2.4 Natural Polymer Adhesive for Wood Panel Industry -- 3.2.5 Tannin Based Bio-Adhesive for Leather Tanning Industry -- 3.2.6 Conductive Adhesives in Microelectronics Industry -- 3.2.7 Bio-Resin Adhesive in Dental Industry -- 3.2.8 Green Adhesive in Fiberboard Industry -- 3.3 Conclusions and Future Scope. , References -- Chapter 4 Green Adhesives for Biomedical Applications -- 4.1 Introduction -- 4.2 Main Raw Materials of Green Adhesives: Structure, Composition, and Properties -- 4.2.1 Chitosan -- 4.2.2 Alginate -- 4.2.3 Lignin -- 4.2.4 Lactic Acid PLA -- 4.3 Properties Characterization of Green Adhesives for Biomedical Applications -- 4.3.1 Diffraction X-Rays (DRX) -- 4.3.2 Atomic Force Microscopy (AFM) -- 4.3.3 Scanning Electron Microscope (SEM Images) -- 4.3.4 Wettability or Contact Angle (CA) -- 4.3.5 Fourier Transform Infrared Spectroscopy (FTIR) -- 4.3.6 Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES) -- 4.3.7 Thermal Analysis (TG/DTG/DTA and DSC Curves) -- 4.3.8 Surface Area and Porosimetry Analyzer (ASAP) -- 4.3.9 Mechanical Properties of Green Adhesives -- 4.4 Biomedical Applications of Natural Polymers -- 4.4.1 Alginate -- 4.4.1.1 Biomedical Applications of Alginate -- 4.4.2 Chitosan -- 4.4.2.1 Biomedical Applications of Chitosan -- 4.4.3 Lignin -- 4.4.3.1 Biomedical Applications of Lignin -- 4.4.4 Polylactide (PLA) -- 4.4.4.1 Biomedical Applications of PLA -- 4.5 Final Considerations -- Acknowledgements -- References -- Chapter 5 Waterborne Adhesives -- 5.1 Introduction -- 5.1.1 Motivation for the Use of Waterborne Adhesives -- 5.1.1.1 Sustainability and Environment Regulations -- 5.1.1.2 Circular Economy -- 5.1.1.3 Avoid Harmful Emissions -- 5.1.1.4 Development of Novel and Sustainable End Products -- 5.1.2 Environmental Effects and Mankind Toxicity Analysis -- 5.2 Performance of Waterborne Adhesives: An Overview -- 5.2.1 Waterborne Polyurethane (WBPU) Adhesives -- 5.2.1.1 Chemical Structure of Waterborne PU -- 5.2.1.2 Performances of WBPU Adhesives -- 5.2.2 Waterborne Epoxy Adhesive -- 5.3 Conclusions -- References -- Chapter 6 Using Polyfurfuryl Alcohol as Thermoset Adhesive/Sealant -- 6.1 Introduction. , 6.2 Furfuryl Alcohol as Adhesives -- 6.3 Polyfurfuryl Alcohol as Sealants -- 6.3.1 Effect of Different Parameters on the Curing of PFA-Based Sealants -- 6.4 Applications -- 6.5 Conclusions -- Acknowledgement -- References -- Chapter 7 Bioadhesives -- 7.1 Introduction -- 7.2 History of Bioadhesives -- 7.3 Classification of Bioadhesives -- 7.4 Mechanism of Bioadhesion -- 7.4.1 Mechanical Interlocking -- 7.4.2 Chain Entanglement -- 7.4.3 Intermolecular Bonding -- 7.4.4 Electrostatic Bonding -- 7.5 Testing of Bioadhesives -- 7.5.1 In Vitro Methods -- 7.5.1.1 Shear Stress Measurements -- 7.5.1.2 Peel Strength Evaluation -- 7.5.1.3 Flow Through Experiment and Plate Method -- 7.5.2 Ex Vitro Methods -- 7.5.2.1 Adhesion Weight Method -- 7.5.2.2 Fluorescent Probe Methods -- 7.5.2.3 Falling Liquid Film Method -- 7.6 Application of Bioadhesives -- 7.6.1 Bioadhesives as Drug Delivery Systems -- 7.6.2 Bioadhesives as Fibrin Sealants -- 7.6.3 Bioadhesives as Protein-Based Adhesives -- 7.6.4 Bioadhesives in Tissue Engineering -- 7.7 Conclusion -- References -- Chapter 8 Polysaccharide-Based Adhesives -- 8.1 Introduction -- 8.2 Cellulose-Derived Adhesive -- 8.2.1 Esterification -- 8.2.1.1 Cellulose Nitrate -- 8.2.1.2 Cellulose Acetate -- 8.2.1.3 Cellulose Acetate Butyrate -- 8.2.2 Etherification -- 8.2.2.1 Methyl Cellulose -- 8.2.2.2 Ethyl Cellulose -- 8.2.2.3 Carboxymethyl Cellulose -- 8.3 Starch-Derived Adhesives -- 8.3.1 Alkali Treatment -- 8.3.2 Acid Treatment -- 8.3.3 Heating -- 8.3.4 Oxidation -- 8.4 Natural Gums Derived-Adhesives -- 8.5 Fermentation-Based Adhesives -- 8.6 Enzyme Cross-Linked-Based Adhesives -- 8.7 Micro-Biopolysaccharide-Based Adhesives -- 8.8 Mechanism of Adhesion -- 8.9 Tests for Adhesion Strength -- 8.10 Applications -- 8.10.1 Biomedical Applications -- 8.10.2 Food Stuffs Applications -- 8.10.3 Pharmaceutical Applications. , 8.10.4 Agricultural Applications -- 8.10.5 Cigarette Manufacturing -- 8.10.6 Skin Cleansing Applications -- 8.11 Conclusion -- References -- Chapter 9 Wound Healing Adhesives -- 9.1 Introduction -- 9.2 Wound -- 9.2.1 Types of Wounds -- 9.2.1.1 Acute Wounds -- 9.2.1.2 Chronic Wounds -- 9.3 Structure and Function of the Skin -- 9.4 Mechanism of Wound Healing -- 9.5 Wound Closing Techniques -- 9.6 Wound Healing Adhesives -- 9.7 Types of Wound Healing Adhesives Based Upon Site of Application -- 9.7.1 External Use Wound Adhesives -- 9.7.1.1 Steps for Applying External Wound Healing Adhesives on Skin [30] -- 9.7.2 Internal Use Wound Adhesives -- 9.8 Types of Wound Healing Adhesives Based Upon Chemistry -- 9.8.1 Natural Wound Healing Adhesives -- 9.8.1.1 Fibrin Sealants/Fibrin-Based Tissue Adhesives -- 9.8.1.2 Albumin-Based Adhesives -- 9.8.1.3 Collagen and Gelatin-Based Wound Healing Adhesives -- 9.8.1.4 Starch -- 9.8.1.5 Chitosan -- 9.8.1.6 Dextran -- 9.8.2 Synthetic Wound Healing Adhesives -- 9.8.2.1 Cyanoacrylate -- 9.8.2.2 Poly Ethylene Glycol-Based Wound Adhesives (PEG) -- 9.8.2.3 Hydrogels -- 9.8.2.4 Polyurethane -- 9.9 Summary -- References -- Chapter 10 Green-Wood Flooring Adhesives -- 10.1 Introduction -- 10.2 Wood Flooring -- 10.2.1 Softwood Flooring -- 10.2.2 Hardwood Flooring -- 10.2.3 Engineered Wood Flooring -- 10.2.4 Laminate Flooring -- 10.2.5 Vinyl Flooring -- 10.2.6 Agricultural Residue Wood Flooring Panels -- 10.3 Recent Advances About Green Wood-Flooring Adhesives -- 10.3.1 Xylan -- 10.3.2 Modified Cassava Starch Bioadhesives -- 10.3.3 High-Efficiency Bioadhesive -- 10.3.4 Bioadhesive Made From Soy Protein and Polysaccharide -- 10.3.5 Green Cross-Linked Soy Protein Wood Flooring Adhesive -- 10.3.6 "Green" Bio-Thermoset Resins Derived From Soy Protein Isolate and Condensed Tannins. , 10.3.7 Development of Green Adhesives Using Tannins and Lignin for Fiberboard Manufacturing -- 10.3.8 Cottonseed Protein as Wood Adhesives -- 10.3.9 Chitosan as an Adhesive -- 10.3.10 PE-cg-MAH Green Wood Flooring Adhesive -- References -- Chapter 11 Synthetic Binders for Polymer Division -- List of Abbreviations -- 11.1 Introduction -- 11.2 Classification of Adhesives Based on Its Chemical Properties -- 11.2.1 Thermoset Adhesives -- 11.2.2 Thermoplastic Adhesives -- 11.2.3 Adhesive Blends -- 11.3 Adhesives Characteristics -- 11.4 Adhesives Classification Based on Its Function -- 11.4.1 Permanent Adhesives -- 11.4.2 Removable Adhesives -- 11.4.3 Repositionable Adhesives -- 11.4.4 Blended Adhesives -- 11.4.5 Anaerobic Adhesives -- 11.4.6 Aromatic Polymer Adhesives -- 11.4.7 Asphalt -- 11.4.8 Adhesives Based on Butyl Rubber -- 11.4.9 Cellulose Ester Adhesives -- 11.4.10 Adhesives Based on Cellulose Ether -- 11.4.11 Conductive Adhesives -- 11.4.12 Electrically Conductive Adhesive Materials -- 11.4.13 Thermally Conductive Adhesives -- 11.5 Resin -- 11.5.1 Unsaturated Polyester Resin -- 11.5.2 Monomers -- 11.5.2.1 Unsaturated Polyester -- 11.5.2.2 Alcohol Constituents -- 11.5.2.3 Constituents Like Anhydride and Acid -- 11.5.3 Vinyl Monomers of Unsaturated Polyester Resins -- 11.5.4 Styrenes -- 11.5.5 Acrylates and Methacrylates -- 11.5.6 Vinyl Ethers -- 11.5.7 Fillers -- 11.6 Polyurethanes -- 11.6.1 Monomers -- 11.6.1.1 Diisocyanates -- 11.6.1.2 Phosgene Route -- 11.6.1.3 Phosgene-Free Route -- 11.6.1.4 Polyols -- 11.6.1.5 Vinyl Functionalized Polyols -- 11.6.1.6 Polyols Based on Modified Polyurea -- 11.6.1.7 Polyols Based on Polyester -- 11.6.1.8 Acid and Alcohols-Based Polyesters -- 11.6.2 Rectorite Nanocomposites -- 11.6.3 Zeolite -- 11.7 Epoxy Resins -- 11.7.1 Monomers -- 11.7.1.1 Epoxides -- 11.7.1.2 Hyper Branched Polymers. , 11.7.2 Epoxide Resins Based on Liquid Crystalline Structure.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...