GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Nanostructured materials.  (1)
  • Newark :John Wiley & Sons, Incorporated,  (1)
Document type
Publisher
  • Newark :John Wiley & Sons, Incorporated,  (1)
Language
Years
  • 1
    Online Resource
    Online Resource
    Newark :John Wiley & Sons, Incorporated,
    Keywords: Nanostructured materials. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (491 pages)
    Edition: 1st ed.
    ISBN: 9781119651161
    Language: English
    Note: Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Application of MOFs and Their Derived Materials in Sensors -- 1.1 Introduction -- 1.2 Application of MOFs and Their Derived Materials in Sensors -- 1.2.1 Optical Sensor -- 1.2.1.1 Colorimetric Sensor -- 1.2.1.2 Fluorescence Sensor -- 1.2.1.3 Chemiluminescent Sensor -- 1.2.2 Electrochemical Sensor -- 1.2.2.1 Amperometric Sensor -- 1.2.2.2 Impedimetric, Electrochemiluminescence, and Photoelectrochemical Sensor -- 1.2.3 Field-Effect Transistor Sensor -- 1.2.4 Mass-Sensitive Sensor -- 1.3 Conclusion -- Acknowledgments -- References -- Chapter 2 Applications of Metal-Organic Frameworks (MOFs) and Their Derivatives in Piezo/Ferroelectrics -- 2.1 Introduction -- 2.1.1 Brief Introduction to Piezo/Ferroelectricity -- 2.2 Fundamentals of Piezo/Ferroelectricity -- 2.3 Metal-Organic Frameworks for Piezo/ Ferroelectricity -- 2.4 Ferro/Piezoelectric Behavior of Various MOFs -- 2.5 Conclusion -- References -- Chapter 3 Fabrication and Functionalization Strategies of MOFs and Their Derived Materials "MOF Architecture" -- 3.1 Introduction -- 3.2 Fabrication and Functionalization of MOFs -- 3.2.1 Metal Nodes -- 3.2.2 Organic Linkers -- 3.2.3 Secondary Building Units -- 3.2.4 Synthesis Methods -- 3.2.4.1 Hydrothermal and Solvothermal Method -- 3.2.4.2 Microwave Synthesis -- 3.2.4.3 Electrochemical Method -- 3.2.4.4 Mechanochemical Synthesis -- 3.2.4.5 Sonochemical (Ultrasonic Assisted) Method -- 3.2.4.6 Diffusion Method -- 3.2.4.7 Template Method -- 3.2.5 Synthesis Strategies -- 3.3 MOF Derived Materials -- 3.4 Conclusion -- References -- Chapter 4 Application of MOFs and Their Derived Materials in Molecular Transport -- 4.1 Introduction -- 4.2 MOFs as Nanocarriers for Membrane Transport -- 4.2.1 MIL-89 -- 4.2.2 MIL-88A -- 4.2.3 MIL-100 -- 4.2.4 MIL-101 -- 4.2.5 MIL-53 -- 4.2.6 ZIF-8. , 4.2.7 Zn-TATAT -- 4.2.8 BioMOF-1 (Zn) -- 4.2.9 UiO (Zr) -- 4.3 Conclusion -- References -- Chapter 5 Role of MOFs as Electro/-Organic Catalysts -- 5.1 What Is MOFs -- 5.2 MOFs as Electrocatalyst in Sensing Applications -- 5.3 MOFs as Organic Catalysts in Organic Transformations -- 5.4 Conclusion and Future Prospects -- References -- Chapter 6 Application of MOFs and Their Derived Materials in Batteries -- 6.1 Introduction -- 6.2 Metal-Organic Frameworks -- 6.2.1 Classification and Properties of Metal-Organic Frameworks -- 6.2.2 Potential Applications of MOFs -- 6.2.3 Synthesis of MOFs -- 6.3 Polymer Electrolytes -- 6.3.1 Historical Perspectives and Classification of Polymer Electrolytes -- 6.3.2 MOF Based Polymer Electrolytes -- 6.4 Ionic Liquids -- 6.4.1 Properties of Ionic Liquids -- 6.4.2 Ionic Liquid Incorporated MOF -- 6.5 Ion Transport in Polymer Electrolytes -- 6.5.1 General Description of Ionic Conductivity -- 6.5.2 Models for Ionic Transport in Polymer Electrolytes -- 6.5.3 Impedance Spectroscopy and Ionic Conductivity Measurements -- 6.5.4 Concept of Mismatch and Relaxation -- 6.5.5 Scaling of ac Conductivity -- 6.6 IL Incorporated MOF Based Composite Polymer Electrolytes -- 6.7 Conclusion and Perspectives -- References -- Chapter 7 Fine Chemical Synthesis Using Metal-Organic Frameworks as Catalysts -- 7.1 Introduction -- 7.2 Oxidation Reaction -- 7.2.1 Epoxidation -- 7.2.2 Sulfoxidation -- 7.2.3 Aerobic Oxidation of Alcohols -- 7.3 1,3-Dipolar Cycloaddition Reaction -- 7.4 Transesterification Reaction -- 7.5 C-C Bond Formation Reactions -- 7.5.1 Heck Reactions -- 7.5.2 Sonogashira Coupling -- 7.5.3 Suzuki Coupling -- 7.6 Conclusion -- References -- Chapter 8 Application of Metal Organic Framework and Derived Material in Hydrogenation Catalysis -- 8.1 Introduction -- 8.1.1 The Active Centers in Parent MOF Materials. , 8.1.2 The Active Centers in MOF Catalyst -- 8.1.3 Metal Nodes -- 8.2 Hydrogenation Reactions -- 8.2.1 Hydrogenation of Alpha-Beta Unsaturated Aldehyde -- 8.2.2 Hydrogenation of Cinnamaldehyde -- 8.2.3 Hydrogenation of Nitroarene -- 8.2.4 Hydrogenation of Nitro Compounds -- 8.2.5 Hydrogenation of Benzene -- 8.2.6 Hydrogenation of Quinoline -- 8.2.7 Hydrogenation of Carbon Dioxide -- 8.2.8 Hydrogenation of Aromatics -- 8.2.9 Hydrogenation of Levulinic Acid -- 8.2.10 Hydrogenation of Alkenes and Alkynes -- 8.2.11 Hydrogenation of Phenol -- 8.3 Conclusion -- References -- Chapter 9 Application of MOFs and Their Derived Materials in Solid-Phase Extraction -- 9.1 Solid-Phase Extraction -- 9.1.1 Materials in SPE -- 9.2 MOFs and COFs in Miniaturized Solid-Phase Extraction (µSPE) -- 9.3 MOFs and COFs in Miniaturized Dispersive Solid-Phase Extraction (D-µSPE) -- 9.4 MOFs and COFs in Magnetic-Assisted Miniaturized Dispersive Solid-Phase Extraction (m-D-µSPE) -- 9.5 Concluding Remarks -- Acknowledgments -- References -- Chapter 10 Anticancer and Antimicrobial MOFs and Their Derived Materials -- 10.1 Introduction -- 10.2 Anticancer MOFs -- 10.2.1 MOFs as Drug Carriers -- 10.2.2 MOFs in Phototherapy -- 10.3 Antibacterial MOFs -- 10.4 Antifungal MOFs -- References -- Chapter 11 Theoretical Investigation of Metal-Organic Frameworks and Their Derived Materials for the Adsorption of Pharmaceutical and Pe -- 11.1 Introduction -- 11.2 General Synthesis Routes -- 11.2.1 Hydrothermal Synthesis -- 11.2.2 Solvothermal Synthesis of MOFs -- 11.2.3 Room Temperature Synthesis -- 11.2.4 Microwave Assisted Synthesis -- 11.2.5 Mechanochemical Synthesis -- 11.2.6 Electrochemical Synthesis -- 11.3 Postsynthetic Modification in MOF -- 11.4 Computational Method -- 11.5 Results and Discussion. , 11.5.1 Binding Behavior Between MIL-100 With the Adsorbates (Diclofenac, Ibuprofen, Naproxen, and Oxybenzone) -- 11.6 Conclusion -- References -- Chapter 12 Metal-Organic Frameworks and Their Hybrid Composites for Adsorption of Volatile Organic Compounds -- 12.1 Introduction -- 12.2 VOCs and Their Potential Hazards -- 12.2.1 Other Sources of VOCs -- 12.3 VOCs Removal Techniques -- 12.4 Fabricated MOF for VOC Removal -- 12.4.1 MIL Series MOFs -- 12.4.2 Isoreticular MOFs -- 12.4.2.1 Adsorption Comparison of the Isoreticular MOFs -- 12.4.3 NENU Series MOFs -- 12.4.4 MOF-5, Eu-MOF, and MOF-199 -- 12.4.5 Amine-Impregnated MIL-100 -- 12.4.6 Biodegradable MOFs MIL-88 Series -- 12.4.7 Catalytic MOFs -- 12.4.8 Photo-Degradating MOFs -- 12.4.9 Some Other Studied MOFs -- 12.5 MOF Composites -- 12.5.1 MIL-101 Composite With Graphene Oxide -- 12.5.2 MIL-101 Composite With Graphite Oxide -- 12.6 Generalization Adsorptive Removal of VOCs by MOFs -- 12.7 Simple Modeling the Adsorption -- 12.7.1 Thermodynamic Parameters -- 12.7.2 Dynamic Sorption Methods -- 12.8 Factor Affecting VOCs Adsorption -- 12.8.1 Breathing Phenomena -- 12.8.2 Activation of MOFs -- 12.8.3 Applied Pressure -- 12.8.4 Relative Humidity -- 12.8.5 Breakthrough Conditions -- 12.8.6 Functional Group of MOFs -- 12.8.7 Concentration, Molecular Size, and Type of VOCs -- 12.9 Future Perspective -- References -- Chapter 13 Application of Metal-Organic Framework and Their Derived Materials in Electrocatalysis -- List of Abbreviations -- 13.1 Introduction -- 13.2 Perspective Synthesis of MOF and Their Derived Materials -- 13.3 MOF for Hydrogen Evolution Reaction -- 13.4 MOF for Oxygen Evolution Reaction -- 13.5 MOF for Oxygen Reduction Reaction -- 13.6 MOF for CO2 Electrochemical Reduction Reaction -- 13.6.1 Electrosynthesis of MOF for CO2 Reduction -- 13.6.2 Composite Electrodes as MOF for CO2 Reduction. , 13.6.3 Continuous Flow Reduction of CO2 -- 13.6.4 CO2 Electrochemical Reduction in Ionic Liquid -- 13.7 MOF for Electrocatalytic Sensing -- 13.8 Electrocatalytic Features of MOF -- 13.9 Conclusion -- Acknowledgment -- References -- Chapter 14 Applications of MOFs and Their Composite Materials in LightDriven Redox Reactions -- 14.1 Introduction -- 14.1.1 MOFs as Photocatalysts -- 14.1.2 Charge Transfer Mechanisms -- 14.1.3 Methods of Synthesis -- 14.2 Pristine MOFs and Their Application in Photocatalysis -- 14.2.1 Group 4 Metallic Clusters -- 14.2.2 Groups 8, 9, and 10 Metallic Clusters -- 14.2.3 Group 11 Metallic Clusters -- 14.2.4 Group 12 Metallic Clusters -- 14.3 Metal Nanoparticles-MOF Composites and Their Application in Photocatalysis -- 14.3.1 Ag-MOF Composites -- 14.3.2 Au-MOF Composites -- 14.3.3 Cu-MOF Composites -- 14.3.4 Pd-MOF Composites -- 14.3.5 Pt-MOF Composites -- 14.4 Semiconductor-MOF Composites and Their Application in Photocatalysis -- 14.4.1 TiO2-MOF Composites -- 14.4.2 Graphitic Carbon Nitride-MOF Composites -- 14.4.3 Bismuth-Based Semiconductors -- 14.4.4 Reduced Graphene Oxide-MOF Composites -- 14.4.5 Silver-Based Semiconductors -- 14.4.6 Other Semiconductors -- 14.5 MOF-Based Multicomponent Composites and Their Application in Photocatalysis -- 14.5.1 Semiconductor-Semiconductor-MOF Composites -- 14.5.2 Semiconductor-Metal-MOF Composites -- 14.6 Conclusions -- References -- Index -- Also of Interest -- Check out these other forthcoming and published titles from Scrivener Publishing -- EULA.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...