GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Publikationsart
Erscheinungszeitraum
  • 1
    Publikationsdatum: 2021-05-11
    Beschreibung: Large volcanic debris flows associated with volcanic island flank collapses may cause devastating tsunamis as they enter the ocean. Computer simulations show that the largest of these volcanic debris flows on oceanic islands such as Hawaii or the Canaries can cause ocean-wide tsunamis (Løvholt et al., 2008; Waythomas et al., 2009). However, the magnitude of these tsunamis is subject to on-going debate as it depends particularly on landslide transport and emplacement processes (Harbitz et al. 2013). A robust understanding of these factors is thus essential in order to assess the hazard of volcanic flank collapses. Recent studies have shown that emplacement processes are far more complex than assumed previously. With a collapsed volume of about 5 km3 the 1888 Ritter Island flank collapse is the largest in historic times and represents an ideal natural laboratory for several reasons: (I) The collapse is comparatively young and the marine deposits are clearly visible, (II) the pre-collapse shape of the island is historically documented and (III) eyewitness reports documenting tsunami arrival times, run-up heights and inundation levels on neighboring islands are available. We propose to collect bathymetric, high resolution 2D and 3D seismic data as well as seafloor samples from the submarine deposits off Ritter Island to learn about the mobility and emplacement dynamics of the 1888 flank collapse landslide. A comparison to similar studies from other volcanic islands will provide an improved understanding of emplacement processes of volcanic island landslides and their overall tsunamigenic potential. In addition, a detailed knowledge of the 1888 landslide processes in combination with tsunami constraints from eyewitness reports provides a unique possibility to determine the landslide velocity, which can then be used in subsequent hazard analyses for ocean islands.
    Materialart: Report , NonPeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2019-09-23
    Beschreibung: Das GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel ist eine der weltweit führenden Einrichtungen auf dem Gebiet der Meeresforschung. Wissenschaftler des GEOMAR untersuchen die chemischen, physikalischen, biologischen und geologischen Prozesse im Ozean und ihre Wechselwirkung mit dem Meeresboden und der Atmosphäre. GEOMAR Helmholtz Centre for Ocean Research Kiel is one of the world’s leading institutes in the field of marine sciences. GEOMAR scientists investigate the chemical, physical, biological and geological processes of the seafloor, oceans and ocean margins and their interactions with the atmosphere.
    Materialart: Video , NonPeerReviewed
    Format: video
    Format: video
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    facet.materialart.
    Unbekannt
    In:  [Paper] In: 81. EAGE Annual Conference + Exhibition 2019, 03.-06.06.2019, London, United Kingdom .
    Publikationsdatum: 2019-10-28
    Materialart: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2022-01-31
    Beschreibung: Volcanic island flank collapses have the potential to trigger devastating tsunamis threatening coastal communities and infrastructure. The 1888 sector collapse of Ritter Island, Papua New Guinea (in the following called Ritter) is the most voluminous volcanic island flank collapse in historic times. The associated tsunami had run-up heights of more than 20 m on the neighboring islands and reached settlements 600 km away from its source. This event provides an opportunity to advance our understanding of volcanic landslide-tsunami hazards. Here, we present a detailed reconstruction of the 1888 Ritter sector collapse based on high-resolution 2D and 3D seismic and bathymetric data covering the failed volcanic edifice and the associated mass-movement deposits. The 3D seismic data reveal that the catastrophic collapse of Ritter occurred in two phases: (1) Ritter was first affected by deep-seated, gradual spreading over a long time period, which is manifest in pronounced compressional deformation within the volcanic edifice and the adjacent seafloor sediments. A scoria cone at the foot of Ritter acted as a buttress, influencing the displacement and deformation of the western flank of the volcano and causing shearing within the volcanic edifice. (2) During the final, catastrophic phase of the collapse, about 2.4 km³ of Ritter disintegrated almost entirely and travelled as a highly energetic mass flow, which incised the underlying sediment. The irregular topography west of Ritter is a product of both compressional deformation and erosion. A crater-like depression underlying the recent volcanic cone and eyewitness accounts suggest that an explosion may have accompanied the catastrophic collapse. Our findings demonstrate that volcanic sector collapses may transform from slow gravitational deformation to catastrophic collapse. Understanding the processes involved in such a transformation is crucial for assessing the hazard potential of other volcanoes with slowly deforming flanks such as Mt. Etna or Kilauea.
    Materialart: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...