GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • OceanRep  (2)
  • 1
    Publication Date: 2021-02-08
    Description: Silicon isotope values (δ30SiDSi) of dissolved silicon (DSi) have been analyzed in the Lena River and its tributaries, one of the largest Arctic watersheds in the world. The geographical and temporal variations of δ30SiDSi range from +0.39 to +1.86‰ with DSi concentrations from 34 to 121 μM. No obvious patterns of DSi concentrations and δ30SiDSi values were observed along over 200 km of the two major tributaries, the Viliui and Aldan Rivers. In summer, the variations of DSi concentrations and δ30SiDSi values in the water are either caused by biological uptake by higher plants and phytoplankton or by mixing of water masses carrying different DSi concentrations and δ30SiDSi values. DSi in tributaries from the Verkhoyansk Mountain Range seems to be associated with secondary clay formation that increased the δ30SiDSi values, while terrestrial biological production is likely more prevalent in controlling δ30SiDSi values in Central Siberian Plateau and Lena Amganski Inter-River Area. In winter, when soils were frozen, the δ30SiDSi values in the river appeared to be controlled by weathering and clay formation in deep intrapermafrost groundwater. During the spring flood, dissolved silicate materials and phytoliths were flushed from the upper thawed soils into rivers, which reset δ30SiDSi values to the values observed prior to the biological bloom in summer. The results indicate that the Si isotope values reflect the changing processes controlling Si outputs to the Lena River and to the Arctic Ocean between seasons. The annual average δ30SiDSi value of the Lena Si flux is calculated to be +0.86±0.3‰ using measured δ30SiDSi values from each season. Combined with the estimate of +1.6±0.25‰ for the Yenisey River, an updated δ30SiDSi value of the major river Si inputs to the Arctic Ocean is estimated to be +1.3±0.3‰. This value is expected to shift towards higher values in the future because of the impacts from a variety of biological and geochemical processes and sources under global warming.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-04-21
    Description: Extensive biogeochemical transformation of organic matter takes place in the shallow continental shelf seas of Siberia. This, in combination with brine production from sea-ice formation, results in cold bottom waters with relatively high salinity and nutrient concentrations, as well as low oxygen and pH levels. Data from the SWERUS-C3 expedition with icebreaker Oden, from July to September 2014, show the distribution of such nutrient-rich, cold bottom waters along the continental margin from about 140 to 180° E. The water with maximum nutrient concentration, classically named the upper halocline, is absent over the Lomonosov Ridge at 140° E, while it appears in the Makarov Basin at 150° E and intensifies further eastwards. At the intercept between the Mendeleev Ridge and the East Siberian continental shelf slope, the nutrient maximum is still intense, but distributed across a larger depth interval. The nutrient-rich water is found here at salinities of up to ∼ 34.5, i.e. in the water classically named lower halocline. East of 170° E transient tracers show significantly less ventilated waters below about 150 m water depth. This likely results from a local isolation of waters over the Chukchi Abyssal Plain as the boundary current from the west is steered away from this area by the bathymetry of the Mendeleev Ridge. The water with salinities of ∼ 34.5 has high nutrients and low oxygen concentrations as well as low pH, typically indicating decay of organic matter. A deficit in nitrate relative to phosphate suggests that this process partly occurs under hypoxia. We conclude that the high nutrient water with salinity ∼ 34.5 are formed on the shelf slope in the Mendeleev Ridge region from interior basin water that is trapped for enough time to attain its signature through interaction with the sediment.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...