GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Elsevier
    In:  Marine and Petroleum Geology, 88 . pp. 724-738.
    Publication Date: 2020-02-06
    Description: Highlights • Features in GLORIA images match those in multibeam sonar data. • Salt walls suggested by lineaments in northern Red Sea. Abstract The Red Sea is an unusual example of a rift basin that transitioned from its evaporitic stage to fully open-ocean conditions at the end of the Miocene (∼5.3 Ma), much more recently than older Mesozoic margins around the Atlantic and Gulf of Mexico. The patterns of halokinetic deformation occurring in the Red Sea are potentially of interest for understanding more generally how evaporite deposits deform during this early stage. Relevant to this issue, a line of reconnaissance sidescan sonar data (GLORIA) collected along the Red Sea in 1979 is re-evaluated here. We first interpret the data with the aid of newly compiled bathymetry from multibeam sonars in the central and southern Red Sea. Features in the acoustic backscatter data are associated with ridges, valleys and rounded flow fronts produced by halokinetic deformation. Some areas of higher acoustic backscattering from the evaporites are suggested to relate to roughness produced by deformation of the evaporite surface. Within the volcanic (oceanic) axial valleys, areas of differing high and low backscattering suggest varied sediment cover and/or carbonate encrustations. With the benefit of the above experience, we then interpreted data from the northern Red Sea, where there are fewer multibeam data available. Rounded fronts of halokinetic deformation are present in the Zabargad Fracture Zone, a broad, shallow valley crossing the Red Sea obliquely. The presence of halokinetic deformation here is evidence that subsidence has occurred along the fracture zone. Elsewhere in the northern Red Sea, the GLORIA data reveal folds in the evaporite surface, suggesting local areas of convergence, like those implied by multibeam data from inter-trough zones further south. Some linear features are observed, many of which are likely to be ridges overlying salt walls. Interestingly, several such features are oriented along an accommodation zone that is oriented parallel to the plate spreading direction. Several rounded, corrugated features are interpreted as possible evaporite flow fronts. Overall, the impression from the data is of a strongly mobile seabed in the Red Sea because of halokinetic deformation, involving both vertical and horizontal movements. However, salt walls appear more common than in the central and southern axial Red Sea, where horizontal movements instead tend to dominate.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    GEOMAR Helmholtz-Zentrum für Ozeanforschung
    In:  GEOMAR Report, N. Ser. 050 . GEOMAR Helmholtz-Zentrum für Ozeanforschung, Kiel, Germany, 46 pp.
    Publication Date: 2019-05-09
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-03-28
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Elsevier
    In:  Tectonophysics, 747/748 . pp. 327-342.
    Publication Date: 2020-01-02
    Description: Highlights • Deep seismic data reveal oceanic-like axial ridge beneath central Red Sea. • Axial high is similar to those of hotspot-affected spreading centres. • Bouguer anomalies predict low average density beneath axis. • This low density implies thickened crust and/or low mantle density. • Normal thickness predicted from Na8.0 implies recent transition from thinner crust. Abstract The Red Sea is an important example of a rifted continental shield proceeding to seafloor spreading. However, whether the crust in the central Red Sea is continental or oceanic has been controversial. Contributing to this debate, we assess the basement geometry using seismic reflection and potential field data. We find that the basement topography from seismically derived structure corrected for evaporite and other sediment loading has an axial high with a width of 70–100 km and a height of 0.8–1.6 km. Basement axial highs are commonly found at mid-ocean ridges affected by hotspots, where enhanced mantle melting results in thickened crust. We therefore interpret this axial high as oceanic-like, potentially produced by recently enhanced melting associated with the broader Afar mantle anomaly. We also find the Bouguer gravity anomalies are strongly correlated with basement reflection depths. The apparent density contrast necessary to explain the Bouguer anomaly varies from 220 kg m−3 to 580 kg m−3 with no trend with latitude. These values are too small to be caused primarily by the density contrast between evaporites and mantle across a crust of uniform thickness and density structure, further supporting a thickened crustal origin for the axial high. Complicating interpretation, only a normal to modestly thickened axial crust is predicted from fractionation-corrected sodium contents (Na8.0), and the basement reflection is rugged, more typical of ultra-slow spreading ridges that are not close to hotspots. We try to reconcile these observations with recent results from seismic tomography, which show modest mantle S-wave velocity anomalies under this part of the Red Sea.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-02-07
    Description: Volcanic islands export clastic material to their surrounding oceans by explosive eruptions, lava emissions, biogenic production on their shelves, and failure of their slopes, amongst other processes. This raises the question of whether geological events (in particular, eruptions and landslides) can be detected offshore and dated, and whether any relationships (for example, with climate changes) can be revealed using sediment cores. The volcanically active central Azorean islands (Faial, Pico, São Jorge, and Terceira), with their neighboring submarine basins, are potentially good candidates for such an analysis. Here, chronostratigraphies of four gravity cores collected amongst the islands are constructed based on twelve radiocarbon dates and two dates derived by geochemically correlating primary volcaniclastic turbidites with ignimbrites on Faial and Terceira Islands. Age-depth models are built from the hemipelagic intervals to estimate individual turbidite dates. Volumes of turbidites are modeled by multiplying basin areas with bed thickness, allowing for various turbidite thinning rates and directions. The volumes of landslide-generated turbidites are only comparable with the largest volumes of their adjacent upper-slope submarine landslide valleys; therefore, such turbidites in the cores likely derive from these largest landslides. Emplacement intervals between turbidites originating from both landslides and pyroclastic density currents are found to be mostly a few thousand years. Frequencies of landslide-generated turbidites and hemipelagic sedimentation rates were both highest in the past 8 k.y. compared to preceding periods up to 50 k.y. High hemipelagic sedimentation rates are interpreted to be related to sea-level rise, allowing more shelf bioproduction and release of particles by coastal erosion. The coincident increased frequencies of submarine landslides may also be associated with the increased sediment supply from the islands, resulting in a more rapid build-up of unstable sediments on submarine slopes. Notably, the emplacement frequencies of turbidites of pyroclastic density current origins do not suggest the decreased eruption frequency toward the Holocene that has been found elsewhere.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: other
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-02-07
    Description: Highlights • Red Sea salt deposits are loaded by only 200–300 m hemipelagics in deep water • Internal growth stratigraphy shows that they were deforming while being deposited • Power spectra of their surface shows they are inverse power-law over 1–13 km scale • Variograms suggest that their surface is stochastic with average lengthscale of ~3 km • Their stochastic character rules out Rayleigh-Taylor models of diapirism here Rayleigh-Taylor models for diapirism predict that diapirs should develop with characteristic spacings, whereas other models predict varied spacings. The deep-water Miocene evaporites in the Red Sea provide a useful opportunity to quantify length scales of diapirism to compare with model predictions. We first review the stratigraphy of the uppermost evaporites in high-resolution seismic data, revealing tectonic growth stratigraphy indicating that halokinetic movements occurred while the evaporites were being deposited. In some places, movements continued after the Miocene evaporite phase. The S-reflection marking the top of the evaporites is an erosional surface, in places, truncating anticlines of layered evaporites. In others, reflections within the uppermost evaporites are conformable, suggesting a lack of erosion. The top of the evaporites therefore had relief at the end of the Miocene. We select for numerical analysis 14 long profiles of topography of the S-reflection. Variograms derived from them after detrending reveal minor periodicity, though with varied wavelength, and varied roughness of the surface. However, an average variogram computed from these profiles is nearly exponential, indicating that the evaporite surface is mostly stochastic with no uniform scale of diapirism. An exponential model fitted to that average variogram suggests a spatial range over which the S-reflection topography becomes decorrelated of 3 km, which is comparable with the mean vertical thickness of the evaporite body. Power spectra of the evaporite surface are flatter at long wavelengths, which we interpret as due to weakness of halite preventing large surface relief from developing. The results suggest only modest periodicity, so the Rayleigh-Taylor model does not explain deformation in the Red Sea evaporites studied here. Their topography may turn out to be useful for suggesting the vertical scales and lengthscales of relief to expect of early stages of other salt giants, such as that of the Santo Basin.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
  • 8
    Publication Date: 2024-03-26
    Description: The Red Sea is an important example of a continental rift transitioning slowly to an oceanic basin. However, structures that can inform us of how that transition occurred have been poorly reported because deep seismic reflection data capable of imaging basement under the rift sediments are generally lacking publicly. Three lines of multichannel seismic reflection data have recently been published revealing structures on the Nubian side of the central part of the basin. In this study, we reassess these data in the light of recent studies of the central Red Sea. Over continental crust, the data reveal reflection sequences likely due to strata at or near the base of the evaporites, in two cases with varied dips suggesting the presence of syn-rift growth stratigraphy. Almost all of those reflections dip downwards towards the rift axis, not away as would be expected from tilted fault blocks of bookshelf faulting types. That observation, and low relief of basement, confirm inferences made earlier based on gravity anomalies that this part of the Red Sea lacks large-relief fault escarpments and is most likely a syn-rift sag basin. In the transition to oceanic crust, an abnormally broad magnetic anomaly of estimated Chron 5 age is found not to be associated with structures such as sills, so it likely arises from deeper sources. One of the seismic lines traverses a ridge in Bouguer gravity anomalies that runs across the axis. This feature has previously been interpreted as a volcanic ridge similar to those observed at other ultra-slow spreading ridges. The seismic data reveal diffuse basement reflections and confirm that the record immediately above basement lacks reflections typical of sedimentary strata. Both observations are consistent with the presence of oceanic crust. Modelling of gravity anomalies suggests the ridge is likely underlain by igneous intrusive rocks displacing mantle rocks, as expected for a volcanic ridge. The seismic data, combined with recently updated multibeam and high-resolution sparker seismic results, further suggest how the evaporite movements have been modulated by basement topography. These results add to our knowledge of the evaporite movements and continent-ocean transition structures in the central Red Sea.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-01-19
    Description: Geological histories of volcanic ocean islands can be revealed by the sediments shed by them. Hence there is an interest in studying cores of volcaniclastic sediments that are particularly preserved in the many flat-floored basins lying close to the Azores islands. We analyse four gravity cores collected around the central group of the islands. Three sedimentary facies (F1-F2a, F2b) are recognized based on visual core logging, particle morphometric and geochemical analyses. F1 is clay-rich hemipelagite comprising homogeneous mud with mottled structures from bioturbation. F2a and F2b are both clay-poor volcaniclastic deposits, which are carbonate-rich and carbonate-poor, respectively. More biogenic carbonate in F2a reflects the incorporation of unconsolidated calcareous material from island shelves or bioturbation. Within F2a and F2b we identify deposits emplaced by pyroclastic fallout, primary or secondary turbidity currents by combining multiple information from lithological composition, sedimentary structures, chemical composition of volcanic glass shards and morphometric characteristics of volcanic particles. Primary volcaniclastic sediments were found in all four cores, echoing activity known to have occurred up to historical times on the adjacent islands. These preliminary results suggest that greater details of geological events could be inferred for other volcanic islands by adopting a similar approach to core analysis.
    Type: Book chapter , NonPeerReviewed , info:eu-repo/semantics/bookPart
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...