GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
  • 1
    Publication Date: 2023-03-03
    Description: Gridded multibeam bathymetry from Pelagia cruise 64PE445, Project SALTAX in 2018. The raw-data were post-processed and gridded at a resolution of 30 m with QPS Qimera. Small gaps are interpolated. TFW and PRJ files included. For RAW data please contact the authors.
    Keywords: 64PE445; 64PE445_MB; Bathymetry; MBES; mid ocean rift; Multibeam echosounder; Pelagia; Red Sea; red sea rift; SALTAX
    Type: Dataset
    Format: application/zip, 6.5 MBytes
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-04-20
    Description: This zip file contains a processed high-resolution (2m) bathymetry grid from the summit of the Hatiba Mons volcano in the Red Sea rift. The data were collected in February 2022 with a 6000m rated Hugin Superior AUV provided by FUGRO. The AUV carried a Kongsberg EM2040 Mk2 multibeam echosounder set to 200 kHz. USBL navigation data were post-processed in NavLab. The bathymetry data were post-processed, merged with the corrected navigation, gridded, and interpolated in QPS Qimera. Multibeam backscatter data (1m) were mosaiced in QPS FMGT from the raw data and cleaned Qimera GSF exports (both mosaics are provided). All files' coordinate reference system (CRS) is EPSG:32637 - WGS 84 / UTM zone 37N.
    Keywords: AUV; AUV bathymetry; Backscatter; Bathymetry; Bathymetry and Backscatter; Binary Object; Binary Object (File Size); Binary Object (Media Type); Elevation, maximum; Elevation, minimum; File content; high-resolution bathymetry; Horizontal datum; Horizontal datum, projection stored in file; HT_02-2022; HT_02-2022-1; Latitude, northbound; Latitude, southbound; Longitude, eastbound; Longitude, westbound; Mid-Ocean Ridge; Multibeam echosounder, Kongsberg Maritime, EM 2040; mounted on Autonomous Underwater Vehicle (AUV), Kongsberg, Hugin Superior; OSS Handin Tide; Raster cell size; Red Sea; red sea rift; Seamount; submarine volcano; UTM Easting, Universal Transverse Mercator; UTM Northing, Universal Transverse Mercator; UTM Zone, Universal Transverse Mercator; Vertical datum
    Type: Dataset
    Format: text/tab-separated-values, 45 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-04-20
    Description: Multibeam bathymetry raw data was recorded in the North Atlantic during cruise MSM70 that took place between 2017-12-25 and 2018-02-04. The data was collected using the ship's own Kongsberg EM 122. Sound velocity profiles (SVP) were applied on the data for calibration. SVP data are part of this dataset publication. This data is part of the DAM (German Marine Research Alliance) underway research data project.
    Keywords: Bathymetry; Binary Object; DAM_Underway; DAM Underway Research Data; Data file recording distance; Data file recording duration; DATE/TIME; EM122; EM122 multibeam echosounder; Event label; Expendable Sound Velocimeter; File content; LATITUDE; LONGITUDE; Maria S. Merian; MSM70; MSM70_0_underway-8; MSM70_1-1; MSM70_28-1; Multibeam Echosounder; Ship speed; Sound velocity profiler; South Atlantic Ocean; Start of data file recording, date/time; Start of data file recording, latitude; Start of data file recording, longitude; Stop of data file recording, date/time; Stop of data file recording, latitude; Stop of data file recording, longitude; SVP; XSV
    Type: Dataset
    Format: text/tab-separated-values, 5979 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-04-20
    Description: This dataset contains a processed high-resolution (2m) bathymetry grid from the eastern axial volcanic ridge of Hadarba Deep. The acquisition was carried out in February 2022 from the OSS Handin Tide using the 6000m rated Hugin Superior AUV provided by FUGRO. The AUV was equipped with a Kongsberg EM2040 Mk2 multibeam echosounder set to 200 kHz. USBL navigation data were post-processed in NavLab. The bathymetry data were post-processed, merged with the corrected navigation, gridded, and interpolated in QPS Qimera. Multibeam backscatter data (0.8 m) were mosaiced in QPS FMGT from the raw data and cleaned Qimera GSF exports (both the bathymetric grid and backscatter mosaic are provided). All files' coordinate reference system (CRS) is EPSG:32637 - WGS 84 / UTM zone 37N.
    Keywords: Binary Object; Binary Object (File Size); Binary Object (Media Type); Elevation, maximum; Elevation, minimum; Extracted from file; File content; Horizontal datum; Horizontal datum, projection stored in file; HT_02-2022; HT_02-2022-2; Latitude, northbound; Latitude, southbound; Longitude, eastbound; Longitude, westbound; Multibeam echosounder, Kongsberg Maritime, EM 2040; mounted on Autonomous Underwater Vehicle (AUV), Kongsberg, Hugin Superior; OSS Handin Tide; Raster cell size; UTM Easting, Universal Transverse Mercator; UTM Northing, Universal Transverse Mercator; UTM Zone, Universal Transverse Mercator; Vertical datum
    Type: Dataset
    Format: text/tab-separated-values, 31 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-02-08
    Description: Continental breakup represents the successful process of rifting and thinning of the continental lithosphere, leading to plate rupture and initiation of oceanic crust formation. Magmatism during breakup seems to follow a path of either excessive, transient magmatism (magma-rich margins) or of igneous starvation (magma-poor margins). The latter type is characterized by extreme continental lithospheric extension and mantle exhumation prior to igneous oceanic crust formation. Discovery of magma-poor margins has raised fundamental questions about the onset of ocean-floor type magmatism, and has guided interpretation of seismic data across many rifted margins, including the highly extended northern South China Sea margin. Here we report International Ocean Discovery Program drilling data from the northern South China Sea margin, testing the magma-poor margin model outside the North Atlantic. Contrary to expectations, results show initiation of Mid-Ocean Ridge basalt type magmatism during breakup, with a narrow and rapid transition into igneous oceanic crust. Coring and seismic data suggest that fast lithospheric extension without mantle exhumation generated a margin structure between the two endmembers. Asthenospheric upwelling yielding Mid-Ocean Ridge basalt-type magmatism from normal-temperature mantle during final breakup is interpreted to reflect rapid rifting within thin pre-rift lithosphere.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-02-06
    Description: Hydrothermal circulation at slow-spreading ridges is important for cooling the newly formed lithosphere, but the depth to which it occurs is uncertain. Magmas which stagnate and partially crystallize during their rise from the mantle provide a means to constrain the depth of circulation because assimilation of hydrothermal fluids or hydrothermally altered country rock will raise their chlorine (Cl) contents. Here we present Cl concentrations in combination with chemical thermobarometry data on glassy basaltic rocks and melt inclusions from the Southern Mid-Atlantic Ridge (SMAR; ~ 3 cm year−1 full spreading rate) and the Gakkel Ridge (max. 1.5 cm year−1 full spreading rate) in order to define the depth and extent of chlorine contamination. Basaltic glasses show Cl-contents ranging from ca. 50–430 ppm and ca. 40–700 ppm for the SMAR and Gakkel Ridge, respectively, whereas SMAR melt inclusions contain between 20 and 460 ppm Cl. Compared to elements of similar mantle incompatibility (e.g. K, Nb), Cl-excess (Cl/Nb or Cl/K higher than normal mantle values) of up to 250 ppm in glasses and melt inclusions are found in 75% of the samples from both ridges. Cl-excess is interpreted to indicate assimilation of hydrothermal brines (as opposed to bulk altered rock or seawater) based on the large range of Cl/K ratios in samples showing a limited spread in H2O contents. Resorption and disequilibrium textures of olivine, plagioclase and clinopyroxene phenocrysts and an abundance of xenocrysts and gabbroic fragments in the SMAR lavas suggest multiple generations of crystallization and assimilation of hydrothermally altered rocks that contain these brines. Calculated pressures of last equilibration based on the major element compositions of melts cannot provide reliable estimates of the depths at which this crystallization/assimilation occurred as the assimilation negates the assumption of crystallization under equilibrium conditions implicit in such calculations. Clinopyroxene–melt thermobarometry on rare clinopyroxene phenocrysts present in the SMAR magmas yield lower crustal crystallization/assimilation depths (10–13 km in the segment containing clinopyroxene). The Cl-excesses in SMAR melt inclusions indicate that assimilation occurred before crystallization, while also homogeneous Cl in melts from Gakkel Ridge indicate Cl addition during magma chamber processes. Combined, these observations imply that hydrothermal circulation reaches the lower crust at slow-spreading ridges, and thereby promotes cooling of the lower crust. The generally lower Cl-excess at slow-spreading ridges (compared to fast-spreading ridges) is probably related to them having few if any permanent magma chambers. Magmas therefore do not fractionate as extensively in the crust, providing less heat for assimilation (on average, slow-spreading ridge magmas have higher Mg#), and hydrothermal systems are ephemeral, leading to lower total degrees of crustal alteration and more variation in the amount of Cl contamination. Hydrothermal plumes and vent fields have samples in close vicinity that display Cl-excess, mostly of 〉 25 ppm, which thus can aid as a guide for the exploration of (active or extinct) hydrothermal vent fields on the axis.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-02-06
    Description: Highlights • Debunscha Maar magmas mixed and fractional crystallised at upper mantle depths • Its main magma source is peridotite with a minor pyroxenite component • Amphibole signal and high olivine Ca/Al indicate a metasomatised peridotite mantle • Mantle potential temperatures give no sign of an anomalous hot mantle Abstract Debunscha Maar is a monogenetic volcano forming part of the Mt. Cameroon volcanic field, located within the Cameroon Volcanic Line (CVL). Partly glassy cauliflower bombs have primitive basanite-picrobasalt compositions and contain abundant normally and reversely zoned olivine (Fo 77–87) and clinopyroxene phenocrysts. Naturally quenched melt inclusions in the most primitive olivine phenocrysts show compositions which, when corrected for post-entrapment modification, cover a wide range from basanite to alkali basalt (MgO 6.9–11.7 wt.%), and are generally more primitive than the matrix glasses (MgO 5.0–5.5 wt.%) and only partly fall on a common liquid line of descent with the bulk rock samples and matrix glasses. Melt inclusion trace element compositions lie on two distinct geochemical trends: one (towards high Ba/Nb) is thought to represent the effect of various proportions of anhydrous lherzolite and amphibole-bearing peridotite in the source, while the other (for example, high La/Y) reflects variable degrees of partial melting. Comparatively low fractionation-corrected CaO in the melt inclusions with the highest La/Y suggests minor involvement of a pyroxenite source component that is only visible at low degrees of melting. Most of the samples show elevated Gd/Yb, indicating up to 8% garnet in the source. The range of major and trace elements represented by the melt inclusions covers the complete geochemical range given by basalts from different volcanoes of the Cameroon volcanic line, indicating that geochemical signatures that were previously thought to be volcano-specific in fact are probably present under all volcanoes. Clinopyroxene-melt barometry strongly indicates repeated mixing of compositionally diverse melts within the upper mantle at 830 ± 170 MPa prior to eruption. Mantle potential temperatures estimated for the primitive melt inclusions suggest that the thermal influence of a mantle plume is not required to explain the magma petrogenesis.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Format: other
    Format: other
    Format: other
    Format: other
    Format: other
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-10-22
    Description: The Mg- and Si-rich nature of the sub-cratonic lithospheric mantle (SCLM) beneath the Kaapvaal Craton indicates extensive melt depletion, followed by a Si-enrichment process. Six highly silica enriched peridotites from Kimberley containing high amounts of orthopyroxene (Opx) or garnet (Grt) that are locally concentrated in clots, were investigated to constrain the timing and nature of the Si-enrichment process. A clinopyroxene-bearing lherzolite containing an Opx-clot was studied to quantify the effects of recent metasomatism on the Si-enriched samples. Minerals from the lherzolite, together with Opx from harzburgites and Opx- and Grt-clots have Hf–Nd isotope ratios at the time of kimberlite eruption, 90 Ma, comparable to group I kimberlites and are close to trace element equilibrium with kimberlitic melts. This implies the xenoliths underwent major interaction with kimberlitic melts close to the time of kimberlite eruption. Harzburgites and mineral clots record equilibration pressures and temperatures of, respectively, between 3.5–4.3 GPa and 930–1060 °C. The garnets in Opx-clots have low Lu/Hf and εHf(t) −15, whereas garnets from Grt-clots have high Lu/Hf and εHf(t) +10. In contrast, Grt from both Grt- and Opx-clots have low Sm/Nd and εNd −10. The whole rock platinum group element (PGE) concentrations are an order of magnitude higher in the Grt-clot than the Opx-clot. Measured 187Os/188Os range from 0.1085 to 0.1222. The Grt-clot bearing sample yields Nd–Hf–Os isotope model ages that suggest formation in the Neoproterozoic (∼650 Ma). In contrast, an Opx-clot yields TRD ages of 2.8 Ga, which is interpreted as the time of formation of the host harzburgite. The Opx-clots and host harzburgites have comparable Lu–Hf isotope systematics that imply Opx growth at ∼1.3 Ga and hence their formation is not related to the Grt-clots. Garnets from Opx- and Grt-clots have elevated high-field strength element (HFSE) concentrations, and lack HFSE depletion relative to other trace elements with comparable degrees of incompatibility in the mantle (La/Nb 〈 0.5). In addition, calculated melts in equilibrium with Grt have strongly fractionated REE (Nd/Yb 〉 300) and HREE depletion (YbN 〈 0.1) suggesting equilibration with a hydrous melt that is more HREE depleted than a kimberlitic melt. Previous models that related Si-enrichment to subduction are inconsistent with the lack of HFSE depletion (La/Nb 〈 0.5). Therefore the favoured model for Opx- and Grt-clot formation is infiltration of a hydrous melt in a within plate geodynamical environment associated with volcanism in the Mid-proterozoic and Neoproterozoic, respectively. This implies that Si-enrichment of the Kaapvaal SCLM may be a consequence of numerous localised magmatic events rather than a single craton-wide process.
    Type: Article , PeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-09-23
    Description: Highlights • The Red Sea Rift (RSR) comprises the typical terrain of slow MOR axes seen elsewhere. • Submarine salt glaciers occur extensively along the RSR and blanket parts of the RSR. • Inter-trough zones are not continental, but oceanic crust covered by evaporite flows. • We see a global mechanism for spreading initiation and no need for a “multi node” model. • We see prospects for large mineral deposits at passive margins that host evaporites. Abstract The transition from continental rifting to seafloor spreading is presently occurring at only a few places on Earth, such as the Red Sea or the Woodlark Basin. Competing theories for how spreading begins (either by quasi-instantaneous formation of a whole spreading segment or by initiation of spreading at multiple discrete “nodes” separated by thinned continental lithosphere) have been put forward. The major evidence for the nodes theory comes from the Red Sea and geophysical surveys carried out there in the “multi-deeps region” during the 1970's and 1980's. We present new high-resolution multibeam bathymetric information over the same region, which, when combined with acoustic backscatter data, seafloor sampling and magmatic geochemical information appears to provide no support for the nodes model. We show that, although the discrete deeps undoubtedly exist, they are not separated from one another by tectonic boundaries but rather represent “windows” onto a continuous spreading axis which is locally inundated and masked by massive slumping of sediments and evaporites from the rift flanks. The geophysical data that was previously used to support the presence of continental crust between the “nodes” can be equally well explained by processes related to the sedimentary blanketing and sub-sedimentary hydrothermal alteration. A single, “quasi-instantaneous segment formation” model would appear to be all that is required to explain observations from present-day rifting/spreading transitions globally.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-12
    Description: Highlights • Magmatic chlorine-excess is a highly sensitive tracer of hydrothermal contamination. • Red Sea magmas show Cl-excess more extreme than even fast spreading ridges. • High-Cl Red Sea environment produces high-Cl hydrothermally altered crust and magmatic Cl-excess. • (Ultra)slow-spreading ridge magmas can assimilate hydrothermally altered crust. • Magmatic Cl-excess can guide hydrothermal prospection in the Red Sea. Abstract Newly formed oceanic crust is initially cooled by circulating seawater, although where this occurs and over what regions fluids enter the crust is still unclear. Differences in the chlorine (Cl) concentrations between mid-ocean ridge basalt and seawater potentially make Cl a sensitive tracer for this hydrothermal circulation, allowing assimilation of hydrothermal fluids or hydrothermally altered crust by rising magma to be traced by measuring excess Cl in erupted lavas. Such excess Cl has been found in basalts from fast-spreading ridges (Cl concentrations up to 1200 ppm), but not so far on ultraslow- and slow-spreading ridges, where lower Cl values in the basalts (~ 50–200 ppm) make variations harder to measure. The Red Sea, with its relatively saline bottom water (40–42‰, cf. 35‰ salinity in open ocean water), the presence of axial brine pools (up to 270‰ salinity) and thick evaporite sequences flanking the young rift provides an ideal opportunity to study the incorporation of hydrothermal Cl at an ultraslow- to slow-spreading ridge (max. 1.6 cm/yr). Both absolute Cl concentrations (up to 1300 ppm) and ratios of Cl to elements of similar mantle incompatibility (e.g. K, Nb) are much higher in Red Sea basalts than for average ultraslow- and slow-spreading ridges. An origin of these Cl-excesses by seafloor weathering or syn-eruptive contamination can be excluded, as can mineral/melt fractionation during melting or crystallisation, based on trace element data. Instead, the incorporation of Cl at depth derived from hydrothermal circulation either by direct assimilation of hydrothermal fluids or through mixing of magma with partial melts of the hydrothermally altered crust is indicated. We see no influence of local spreading rate, the intensity of seafloor fracturing or the calculated depth of last crystal fractionation on Cl-excess. Seafloor areas with clear evidence of present or recent hydrothermal activity (brine pool temperatures above ambient, presence of hydrothermal sediments) always show Cl-excess in the local basalts and there is a positive correlation between Cl-excess and intensity of local volcanism (as determined by the percentage of local seafloor showing volcanic bathymetric forms). From this we conclude that Cl-excess in basalts is related to high crustal temperatures and hydrothermal circulation and so can be used to prospect for active or recently extinct hydrothermal systems. Samples recovered within 5 km of a seafloor evaporite outcrop show particularly high Cl-excesses, suggesting addition of Cl from the evaporites to the inflow fluids and that this may be the length scale over which hydrothermal recharge occurs.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...