GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-02-08
    Description: The Kryos Basin is a deep-sea hypersaline anoxic basin (DHAB) located in the Eastern Mediterranean Sea (34.98°N 22.04°E). It is filled with brine of re-dissolved Messinian evaporites and is nearly saturated with MgCl2-equivalents, which makes this habitat extremely challenging for life. The strong density difference between the anoxic brine and the overlying oxic Mediterranean seawater impedes mixing, giving rise to a narrow chemocline. Here, we investigate the microbial community structure and activities across the seawater–brine interface using a combined biogeochemical, next-generation sequencing, and lipid biomarker approach. Within the interface, we detected fatty acids that were distinctly 13C-enriched when compared to other fatty acids. These likely originated from sulfide-oxidizing bacteria that fix carbon via the reverse tricarboxylic acid cycle. In the lower part of the interface, we also measured elevated rates of methane oxidation, probably mediated by aerobic methanotrophs under micro-oxic conditions. Sulfate reduction rates increased across the interface and were highest within the brine, providing first evidence that sulfate reducers (likely Desulfovermiculus and Desulfobacula) thrive in the Kryos Basin at a water activity of only ~0.4 Aw. Our results demonstrate that a highly specialized microbial community in the Kryos Basin has adapted to the poly-extreme conditions of a DHAB with nearly saturated MgCl2 brine, extending the known environmental range where microbial life can persist.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-09-23
    Description: Over much of the ocean’s surface, productivity and growth are limited by a scarcity of bioavailable nitrogen. Sedimentary δ15N records spanning the last deglaciation suggest marked shifts in the nitrogen cycle during this time, but the quantification of these changes has been hindered by the complexity of nitrogen isotope cycling. Here we present a database of δ15N in sediments throughout the world’s oceans, including 2,329 modern seafloor samples, and 76 timeseries spanning the past 30,000 years. We show that the δ15N values of modern seafloor sediments are consistent with values predicted by our knowledge of nitrogen cycling in the water column. Despite many local deglacial changes, the globally averaged δ15N values of sinking organic matter were similar during the Last Glacial Maximum and Early Holocene. Considering the global isotopic mass balance, we explain these observations with the following deglacial history of nitrogen inventory processes. During the Last Glacial Maximum, the nitrogen cycle was near steady state. During the deglaciation, denitrification in the pelagic water column accelerated. The flooding of continental shelves subsequently increased denitrification at the seafloor, and denitrification reached near steady-state conditions again in the Early Holocene. We use a recent parameterization of seafloor denitrification to estimate a 30–120% increase in benthic denitrification between 15,000 and 8,000 years ago. Based on the similarity of globally averaged δ15N values during the Last Glacial Maximum and Early Holocene, we infer that pelagic denitrification must have increased by a similar amount between the two steady states.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-03-15
    Description: We present a new nitrogen isotope model incorporated into the three-dimensional ocean component of a global Earth system climate model designed for millennial timescale simulations. The model includes prognostic tracers for the two stable nitrogen isotopes, 14N and 15N, in the nitrate (NO3−), phytoplankton, zooplankton, and detritus variables of the marine ecosystem model. The isotope effects of algal NO3− uptake, nitrogen fixation, water column denitrification, and zooplankton excretion are considered as well as the removal of NO3− by sedimentary denitrification. A global database of δ15NO3− observations is compiled from previous studies and compared to the model results on a regional basis where sufficient observations exist. The model is able to qualitatively and quantitatively reproduce many of the observed patterns such as high subsurface values in water column denitrification zones and the meridional and vertical gradients in the Southern Ocean. The observed pronounced subsurface minimum in the Atlantic is underestimated by the model presumably owing to too little simulated nitrogen fixation there. Sensitivity experiments reveal that algal NO3− uptake, nitrogen fixation, and water column denitrification have the strongest effects on the simulated distribution of nitrogen isotopes, whereas the effect from zooplankton excretion is weaker. Both water column and sedimentary denitrification also have important indirect effects on the nitrogen isotope distribution by reducing the fixed nitrogen inventory, which creates an ecological niche for nitrogen fixers and, thus, stimulates additional N2 fixation in the model. Important model deficiencies are identified, and strategies for future improvement and possibilities for model application are outlined.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-06-19
    Description: We present 42 dual-isotope nitrate analyses of fresh water samples collected in the St. Lawrence River between June 2006 and July 2008. Measured δ15N–NO3 − and δ18O–NO3 − values correlate negatively, while δ18O–NO3 − displays no negative correlation with nitrate concentration. This suggests that nitrate uptake and/or elimination by denitrification is not the main driver of observed variations in nitrate concentration and isotopic signature in the St. Lawrence River. In addition, δ18O–NO3 − is negatively correlated with the seasonally variable δ18O of ambient water, indicating that the variation in the isotopic signature of nitrate is barely modulated by in-stream nitrate regeneration (nitrification). It rather is constrained by along-river changes in the external sources of nitrate. Given the distinct nitrogen (N) and oxygen (O) isotopic signature of atmospheric nitrate, we argue that observed seasonal variations of δ15N–NO3 − and δ18O–NO3 − in the St. Lawrence River are due to variable contributions of snowmelt-derived water. Based on a N and O isotope mass balance, we show that total nitrate loading in the St. Lawrence River is dominated by a N input from the Great Lakes (47 ± 28 %) and from nitrate regeneration of both internal and external N (48 ± 22 %). While temporal nitrate N and O isotope dynamics in the St. Lawrence River are mainly influenced by the atmospheric N input fluctuations, with an increase in atmospheric loading during spring, atmospheric N plays overall a rather insignificant role with regards to the N budget (5 ± 4 %).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-10-26
    Description: Coastal seas may account for more than 75 % of global oceanic methane emissions. There, methane is mainly produced microbially in anoxic sediments from where it can escape to the overlying water column. Aerobic methane oxidation (MOx) in the water column acts as a biological filter reducing the amount of methane that eventually evades to the atmosphere. The efficiency of the MOx filter is potentially controlled by the availability of dissolved methane and oxygen, as well as temperature, salinity, and hydrographic dynamics, and all of these factors undergo strong temporal fluctuations in coastal ecosystems. In order to elucidate the key environmental controls, specifically the effect of oxygen availability, on MOx in a seasonally stratified and hypoxic coastal marine setting, we conducted a 2-year time-series study with measurements of MOx and physico-chemical water column parameters in a coastal inlet in the southwestern Baltic Sea (Eckernförde Bay). We found that MOx rates always increased toward the seafloor, but were not directly linked to methane concentrations. MOx exhibited a strong seasonal variability, with maximum rates (up to 11.6 nmol l−1 d−1) during summer stratification when oxygen concentrations were lowest and bottom-water temperatures were highest. Under these conditions, 70–95 % of the sediment-released methane was oxidized, whereas only 40–60 % were consumed during the mixed and oxygenated periods. Laboratory experiments with manipulated oxygen concentrations in the range of 0.2–220 µmol l−1 revealed a sub-micromolar oxygen-optimum for MOx at the study site. In contrast, the fraction of methane-carbon incorporation into the bacterial biomass (compared to the total amount of oxidised methane) was up to 38-fold higher at saturated oxygen concentrations, suggesting a different partitioning of catabolic and anabolic processes under oxygen-replete and oxygen-starved conditions, respectively. Our results underscore the importance of MOx in mitigating methane emission from coastal waters and indicate an organism-level adaptation of the water column methanotrophs to hypoxic conditions.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-02-06
    Description: Ammonia-oxidizing microorganisms are an important source of the greenhouse gas nitrous oxide (N2O) in aquatic environments. Identifying the impact of pH on N2O production by ammonia oxidizers is key to understanding how aquatic greenhouse gas fluxes will respond to naturally occurring pH changes, as well as acidification driven by anthropogenic CO2. We assessed N2O production rates and formation mechanisms by communities of ammonia-oxidizing bacteria (AOB) and archaea (AOA) in a lake and a marine environment, using incubation-based nitrogen (N) stable isotope tracer methods with 15N-labeled ammonium (15NH4+) and nitrite (15NO2-), and also measurements of the natural abundance N and O isotopic composition of dissolved N2O. N2O production during incubations of water from the shallow hypolimnion of Lake Lugano (Switzerland) was significantly higher when the pH was reduced from 7.54 (untreated pH) to 7.20 (reduced pH), while ammonia oxidation rates were similar between treatments. In all incubations, added NH4+ was the source of most of the N incorporated into N2O, suggesting that the main N2O production pathway involved hydroxylamine (NH2OH) and/or NO2- produced by ammonia oxidation during the incubation period. A small but significant amount of N derived from exogenous/added 15NO2- was also incorporated into N2O, but only during the reduced-pH incubations. Mass spectra of this N2O revealed that NH4+ and 15NO2- each contributed N equally to N2O by a "hybrid-N2O" mechanism consistent with a reaction between NH2OH and NO2-, or compounds derived from these two molecules. Nitrifier denitrification was not an important source of N2O. Isotopomeric N2O analyses in Lake Lugano were consistent with incubation results, as 15N enrichment of the internal N vs. external N atoms produced site preferences (25.0-34.4%) consistent with NH2OH-dependent hybrid-N2O production. Hybrid-N2O formation was also observed during incubations of seawater from coastal Namibia with 15NH4+ and NO2-. However, the site preference of dissolved N2O here was low (4.9%), indicating that another mechanism, not captured during the incubations, was important. Multiplex sequencing of 16S rRNA revealed distinct ammonia oxidizer communities: AOB dominated numerically in Lake Lugano, and AOA dominated in the seawater. Potential for hybrid N2O formation exists among both communities, and at least in AOB-dominated environments, acidification may accelerate this mechanism.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-07-23
    Description: The subtropical northeast Atlantic has previously been identified as a marine environment with an apparent imbalance between low nitrate supply to the surface and concurrent high export production. To better constrain the sources and fluxes of mixed layer nitrate and to assess the potential role of N2 fixation in providing new nitrogen (N), we investigated the depth distribution of nitrate δ15N and δ18O at six stations across the Azores Front in the NE Atlantic. In addition, we measured the δ15N of dissolved organic N (DON) in surface waters and of sinking particulate N collected in sediment traps at 2000 m depth between 2003 and 2005 at Station KIEL276. The nitrate isotope profiles at the majority of the hydrographic stations displayed a decrease in the δ15N from depth toward low-nitrate surface waters, concomitant with an increase in δ18O. Given that nitrate uptake by phytoplankton leads to a proportional increase in nitrate δ15N and δ18O, the observed surface water nitrate isotope anomalies (Δ(15;18) up to −6‰) indicate that nitrate assimilation is not the sole process controlling the isotopic composition of nitrate in the photic zone and implicate a significant addition of newly fixed N that is remineralized in surface and subsurface waters. Both the concentration of DON and its δ15N in surface water were spatially invariant, showing mean values of 4.7 ± 0.5 μmol L−1 and 2.6 ± 0.4‰ (n = 35), respectively, supporting the conjecture of a mostly recalcitrant DON pool. The weighted biannual mean δ15N of sinking particulate N (1.8 ± 0.8‰, n = 33) was low with respect to thermocline nitrate. The anomalous dual nitrate isotope signatures together with the low δ15N of export production and elevated nitrate-to-phosphate ratios in surface and subsurface waters strongly suggest that N2 fixation represents a substantive source of N in this part of the subtropical northeast Atlantic. Simple isotope mass balance suggests that, locally, N2 fixation supplies between 56 and 259 mmol N m−2 a−1 for phytoplankton growth in the photic zone, accounting for up to ∼40% of the estimated export production.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-12-19
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-02-08
    Description: Large amounts of methane are trapped within gas hydrate in subseabed sediments in the Arctic Ocean, and bottom-water warming may induce the release of methane from the seafloor. Yet the effect of seasonal temperature variations on methane seepage activity remains unknown as surveys in Arctic seas are conducted mainly in summer. Here we compare the activity of cold seeps along the gas hydrate stability limit offshore Svalbard during cold (May 2016) and warm (August 2012) seasons. Hydro-acoustic surveys revealed a substantially decreased seepage activity during cold bottom-water conditions, corresponding to a 43% reduction of total cold seeps and methane release rates compared with warmer conditions. We demonstrate that cold seeps apparently hibernate during cold seasons, when more methane gas becomes trapped in the subseabed sediments. Such a greenhouse gas capacitor increases the potential for methane release during summer months. Seasonal bottom-water temperature variations are common on the Arctic continental shelves. We infer that methane-seep hibernation is a widespread phenomenon that is underappreciated in global methane budgets, leading to overestimates in current calculations.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Format: other
    Format: other
    Format: other
    Format: other
    Format: other
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-01-31
    Description: Highlights • We present a 5 myr record of biogeochemical cycling in a Cretaceous upwelling area. • A novel quantitative approach for the evaluation of Fe speciation proxies was applied. • Ferruginous proxy signature reflects intense chemical weathering rather than anoxia. • Water column redox conditions evolved from oxic to nitrogenous to euxinic before OAE2. • Smaller seawater nitrate inventory facilitated sedimentary H2S release and euxinia. Abstract Oceanic Anoxic Events (OAEs) in Earth's history are regarded as analogues for current and future ocean deoxygenation, potentially providing information on its pacing and internal dynamics. In order to predict the Earth system's response to changes in greenhouse gas concentrations and radiative forcing, a sound understanding of how biogeochemical cycling differs in modern and ancient marine environments is required. Here, we report proxy records for iron (Fe), sulfur and nitrogen cycling in the Tarfaya upwelling system in the Cretaceous Proto-North Atlantic before, during and after OAE2 (∼93 Ma). We apply a novel quantitative approach to sedimentary Fe speciation, which takes into account the influence of terrigenous weathering and sedimentation as well as authigenic Fe (non-terrigenous, precipitated onsite) rain rates on Fe-based paleo-redox proxies. Generally elevated ratios of reactive Fe (i.e., bound to oxide, carbonate and sulfide minerals) to total Fe (FeHR/FeT) throughout the 5 million year record are attributed to transport-limited chemical weathering under greenhouse climate conditions. Trace metal and nitrogen isotope systematics indicate a step-wise transition from oxic to nitrogenous to euxinic conditions over several million years prior to OAE2. Taking into consideration the low terrigenous sedimentation rates in the Tarfaya Basin, we demonstrate that highly elevated FeHR/FeT from the mid-Cenomanian through OAE2 were generated with a relatively small flux of additional authigenic Fe. Evaluation of mass accumulation rates of reactive Fe in conjunction with the extent of pyritization of reactive Fe reveals that authigenic Fe and sulfide precipitation rates in the Tarfaya Basin were similar to those in modern upwelling systems. Because of a smaller seawater nitrate inventory, however, chemolithoautotrophic sulfide oxidation with nitrate was less efficient in preventing hydrogen sulfide release into the water column. As terrigenous weathering and sediment flux determine how much authigenic Fe is required to generate an anoxic euxinic or ferruginous proxy signature, we emphasize that both have to be taken into account when interpreting Fe-based paleo-redox proxies.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...