GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    In:  (PhD/ Doctoral thesis), Christian-Albrechts-Universität Kiel, Kiel, Germany, 125 pp
    Publication Date: 2018-08-15
    Type: Thesis , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  (Diploma thesis), Christian-Albrechts-Universität zu Kiel, Kiel, Germany, 88 pp
    Publication Date: 2021-05-14
    Type: Thesis , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 188 . pp. 305-309.
    Publication Date: 2018-05-08
    Description: Seabirds, like all marine endotherms, have to compensate for the extensive cooling effect of water when diving. Alone among them, cormorants (Phalacrocoracidae) have a wettable plumage and are predicted to require disproportionately large amounts of food to balance heat losses. These piscivorous birds are thus thought to have a detrimental impact on fish stocks. However, we show here that even in great cormorants from Greenland, which dive in water at 3 to 7°C, daily food intake is lower than for well-insulated European seabirds. Despite their wettable plumage, cormorants thus appear to manage their energy budgets in a remarkably efficient way. Nevertheless, the specific foraging strategies which enable this performance make cormorants dependent on high prey density areas, a feature that should be taken into account by future management plans.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-07-04
    Description: The great cormorant Phalacrocorax carbo is thought to have a wettable plumage, providing low body insulation during foraging. Great cormorants should thus be constrained by water temperatures, and show high energy requirements. Surprisingly, this species has one of the widest breeding distributions of all diving birds, and does not require more food than these other species. We explored this apparent paradox by comparing the insulative properties of body plumage in four subspecies of great cormorants ranging from tropical to polar regions. We found that all subspecies retained an insulating air layer in their plumage, which was, however, much thinner than for other species of diving birds. Detailed examination of the plumage showed that each cormorant body feather has a loose, instantaneously wet, outer section and a highly waterproof central portion. This indicates that the plumage of great cormorants is only partly wettable, and that birds maintain a thin layer of air in their plumage. Our findings suggest an unusual morphological-functional adaptation to diving which balances the antagonist constraints of thermoregulation and buoyancy.
    Type: Article , PeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    The Company of Biologists
    In:  Journal of Experimental Biology, 189 . pp. 105-115.
    Publication Date: 2019-03-14
    Description: We present a new method of measuring the food intake in cormorants based on stomach temperature recordings. Stomach temperature loggers were deployed both in captive and in free-living birds. We examine the accuracy of this method and compare it with the standard methods of evaluating food intake by pellet or stomach content analysis.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-11-07
    Type: Article , NonPeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-08-06
    Description: Extensive morphological and physiological adjustments are assumed to underpin the adaptations of diving birds to high thermoregulatory costs. However, the role of behavioral adaptations has received little consideration. We have assessed the relative importance of physiological and behavioral adjustments in aquatic endotherms by studying the case of the poorly insulated great cormorant (Phalacrocorax carbo) in two contrasting thermal environments: Normandy (water temperature 12°C) and Greenland (water temperature 5°C). Major differences were found in the feeding behavior of birds breeding in the two regions. Greenland birds showed a 70% reduction in time spent swimming relative to those in Normandy. Reduction in Greenland was achieved first by reducing time spent on the surface between dives and secondly by returning to land in between intensive bouts of diving. Total daily energy intake of cormorants was similar in both areas but prey capture rates in Greenland were 150% higher than those in Normandy. Our study shows that in a cold foraging environment, poorly insulated great cormorants significantly increase their foraging efficiency. To do this they rely on ecological adaptive patterns (minimization of time spent swimming in cold water and increased prey capture rates) far more than physiological adaptations (minimizing instantaneous costs). This finding supports predictions by Grémillet and Wilson (1999) that great cormorants can cope with a wide range of abiotic parameters despite their morphological handicaps, provided they can adjust their distribution to exploit dense prey patches.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-09-23
    Description: We examined how seabirds might be used to study marine environmental variables, which necessitates knowing location and the value of the variable to be studied. Five systems can potentially be used for determination of location: VHF (Very High Frequency) telemetry, PTT (Platform Terminal Transmitters) telemetry, GLS (Global Location Service) geolocation methods, dead reckoning and GPS (Global Positioning System), each with its own advantages with respect to accuracy, potential number of fixes and size. Temperature and light were used to illustrate potential difficulties in recording environmental variables. Systems currently used on seabirds for measurement of temperature respond slowly to environmental changes; thus, they may not measure sea surface temperature adequately when contact periods with water bodies are too short. Light can be easily measured for light extinction studies, but sensor orientation plays a large role in determining recorded values. Both problems can be corrected. The foraging behaviour of seabirds was also examined in order to identify those features which would be useful for determination of marine environmental variables at a variety of spatial and temporal scales. Area coverage by birds is highly dependent on breeding phase and tends to be concentrated in areas where prey acquisition is particularly enhanced. The identification of these sites may be of particular interest to marine biologists. 'Plungers' and 'divers' are potentially most useful for assessment of variables deeper within the water column, with some divers spending up to 90% of their time sub-surface. Few seabirds exploit the water column deeper than 20 m, although some divers regularly exceed 50 m (primarily penguins and auks), while 2 species dive in excess of 300 m. The wide-ranging behaviour of seabirds coupled, in many instances, with their substantial body size makes them potentially excellent carriers of sophisticated environmental measuring technology; however, the ethical question of how much the well-being of birds can, and should, be compromised by such an approach needs to be carefully considered.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 183 . pp. 263-273.
    Publication Date: 2018-05-08
    Description: Diving seabirds should evolve a variety of foraging characteristics which enable them to minimize energy expenditure and to maximize net energy gain while searching for prey underwater. In order to assess the related ecological adaptations in a marine predator, we studied the at-sea distribution and the diving behaviour of 23 cormorants Phalacrocorax carbo (Linnaeus) breeding at the Chausey Islands (France) using VHF-telemetry and data loggers recording hydrostatic pressure. Birds foraged within an area of approximately 1131 km2 situated north-east of the breeding colony. This zone represents only 25% of the maximal potentially available area that the birds may utilize considering their maximum foraging range of 35 km. Individual birds remained within restricted individual foraging areas (on average 18 and 10% of the total utilized area in 1994 and 1995, respectively) throughout the study period. Moreover, the cormorants studied conducted an average of 42 dives per foraging trip, lasting for an average of 40 s (maximum 152 s), and reached an average maximum dive depth of 6.1 m (maximum 32 m) with median descent and ascent angles calculated to be 18.7° and 20.3°, respectively. Overall, 64% of all dives were U-shaped dives and 36% V-shaped dives. We use these results to demonstrate how both specialization and opportunism may support the remarkably high foraging efficiency of this marine predator.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-05-08
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...