GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Data  (5)
Document type
Source
Keywords
Publisher
Years
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Horn, Henriette G; Sander, Nils; Stuhr, Annegret; Algueró-Muñiz, Maria; Bach, Lennart Thomas; Löder, Martin G J; Boersma, Maarten; Riebesell, Ulf; Aberle, Nicole (2016): Low CO2 Sensitivity of Microzooplankton Communities in the Gullmar Fjord, Skagerrak: Evidence from a Long-Term Mesocosm Study. PLoS ONE, 11(11), e0165800, https://doi.org/10.1371/journal.pone.0165800
    Publication Date: 2024-03-06
    Description: Ocean acidification is considered as a crucial stressor for marine communities. In this study, we tested the effects of the IPCC RPC6.0 end-of-century acidification scenario on a natural plankton community in the Gullmar Fjord, Sweden, during a long-term mesocosm experiment from a spring bloom to a mid-summer situation. The focus of this study was on microzooplankton and its interactions with phytoplankton and mesozooplankton. The microzooplankton community was dominated by ciliates, especially small Strombidium sp., with the exception of the last days when heterotrophic dinoflagellates increased in abundance. We did not observe any effects of high CO2 on the community composition and diversity of microzooplankton. While ciliate abundance, biomass and growth rate were not affected by elevated CO2, we observed a positive effect of elevated CO2 on dinoflagellate abundances. Additionally, growth rates of dinoflagellates were significantly higher in the high CO2 treatments. Given the higher Chlorophyll a content measured under high CO2, our results point at mainly indirect effects of CO2 on microzooplankton caused by changes in phytoplankton standing stocks, in this case most likely an increase in small-sized phytoplankton of 〈8 µm. Overall, the results from the present study covering the most important part of the growing season indicate that coastal microzooplankton communities are rather robust towards realistic acidification scenarios.
    Keywords: BIOACID; Biological Impacts of Ocean Acidification
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-03-06
    Keywords: BIOACID; Biological Impacts of Ocean Acidification; Cell, diameter; Cell, length; Cell biovolume; Gullmar Fjord, Skagerrak, Sweden; KOSMOS_2013_Fjord; KOSMOS 2013; Kristineberg, Sweden; MESO; Mesocosm experiment; Taxon/taxa
    Type: Dataset
    Format: text/tab-separated-values, 1816 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-03-06
    Keywords: BIOACID; Biological Impacts of Ocean Acidification; Ciliates, other; DATE/TIME; Day of experiment; Dinoflagellates, athecate; Dinoflagellates, thecate; Dinophysis sp.; Euplotes sp.; Event label; Gullmar Fjord, Skagerrak, Sweden; Gyrodinium sp.; Identification; KOSMOS_2013_Mesocosm-M1; KOSMOS_2013_Mesocosm-M10; KOSMOS_2013_Mesocosm-M2; KOSMOS_2013_Mesocosm-M3; KOSMOS_2013_Mesocosm-M4; KOSMOS_2013_Mesocosm-M5; KOSMOS_2013_Mesocosm-M6; KOSMOS_2013_Mesocosm-M7; KOSMOS_2013_Mesocosm-M8; KOSMOS_2013_Mesocosm-M9; KOSMOS 2013; Laboea strobila; Lohmanniella oviformis; MESO; Mesocosm experiment; Myrionecta rubra; Protoperidinium sp.; Strobilidium sp.; Strombidium sp.; Suctoria; Tontonia gracillima; Treatment
    Type: Dataset
    Format: text/tab-separated-values, 3328 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-03-06
    Keywords: Arcocellulus sp.; BIOACID; Biological Impacts of Ocean Acidification; Ceratium fusus; Ceratium lineatum; Ceratium longipes; Ceratium tripos; Chaetoceros danicus; Chaetoceros decipiens; Coscinodiscus cf. concinnus; Cylindrotheca sp.; DATE/TIME; Day of experiment; Detonula sp.; Event label; Fragilaria sp.; Gullmar Fjord, Skagerrak, Sweden; Hemiselmis sp.; Identification; KOSMOS_2013_Mesocosm-M1; KOSMOS_2013_Mesocosm-M10; KOSMOS_2013_Mesocosm-M2; KOSMOS_2013_Mesocosm-M3; KOSMOS_2013_Mesocosm-M4; KOSMOS_2013_Mesocosm-M5; KOSMOS_2013_Mesocosm-M6; KOSMOS_2013_Mesocosm-M7; KOSMOS_2013_Mesocosm-M8; KOSMOS_2013_Mesocosm-M9; KOSMOS 2013; Licmophora sp.; Melosira sp.; MESO; Mesocosm experiment; Navicula cf. delicatula; Navicula cf. granii; Pseudo-nitzschia sp.; Skeletonema marinoi; Teleaulax sp.; Thalassionema sp.; Thalassiosira sp.; Treatment
    Type: Dataset
    Format: text/tab-separated-values, 2616 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-03-15
    Description: Ocean acidification is considered as a crucial stressor for marine communities. In this study, we tested the effects of the IPCC RPC6.0 end-of-century acidification scenario on a natural plankton community in the Gullmar Fjord, Sweden, during a long-term mesocosm experiment from a spring bloom to a mid-summer situation. The focus of this study was on microzooplankton and its interactions with phytoplankton and mesozooplankton. The microzooplankton community was dominated by ciliates, especially small Strombidium sp., with the exception of the last days when heterotrophic dinoflagellates increased in abundance. We did not observe any effects of high CO2 on the community composition and diversity of microzooplankton. While ciliate abundance, biomass and growth rate were not affected by elevated CO2, we observed a positive effect of elevated CO2 on dinoflagellate abundances. Additionally, growth rates of dinoflagellates were significantly higher in the high CO2 treatments. Given the higher Chlorophyll a content measured under high CO2, our results point at mainly indirect effects of CO2 on microzooplankton caused by changes in phytoplankton standing stocks, in this case most likely an increase in small-sized phytoplankton of 〈8 μm. Overall, the results from the present study covering the most important part of the growing season indicate that coastal microzooplankton communities are rather robust towards realistic acidification scenarios.
    Keywords: Abundance; Alkalinity, total; Aragonite saturation state; Bicarbonate ion; Biological sample; BIOS; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Coast and continental shelf; Community composition and diversity; DATE/TIME; Day of experiment; Entire community; Field experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Gullmar_fjord_2013; Gullmar Fjord, Skagerrak, Sweden; Identification; Mesocosm or benthocosm; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; Phosphate; Salinity; Silicate; Stereomicroscopy (Leica); Temperate; Temperature, water; Treatment; Type
    Type: Dataset
    Format: text/tab-separated-values, 9769 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...