GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Data  (110)
Document type
Source
Keywords
Publisher
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Gibbons, Fern T; Oppo, Delia W; Mohtadi, Mahyar; Rosenthal, Yair; Cheng, Jun; Liu, Zhengyu; Linsley, Braddock K (2014): Deglacial d18O and hydrologic variability in the tropical Pacific and Indian Oceans. Earth and Planetary Science Letters, 387, 240-251, https://doi.org/10.1016/j.epsl.2013.11.032
    Publication Date: 2023-03-03
    Description: Evidence from geologic archives suggests that there were large changes in the tropical hydrologic cycle associated with the two prominent northern hemisphere deglacial cooling events, Heinrich Stadial 1 (HS1; ~19 to 15 kyr BP; kyr BP = 1000 yr before present) and the Younger Dryas (~12.9 to 11.7 kyr BP). These hydrologic shifts have been alternatively attributed to high and low latitude origin. Here, we present a new record of hydrologic variability based on planktic foraminifera-derived d18O of seawater (d18Osw) estimates from a sediment core from the tropical Eastern Indian Ocean, and using 12 additional d18Osw records, construct a single record of the dominant mode of tropical Eastern Equatorial Pacific and Indo-Pacific Warm Pool (IPWP) hydrologic variability. We show that deglacial hydrologic shifts parallel variations in the reconstructed interhemispheric temperature gradient, suggesting a strong response to variations in the Atlantic Meridional Overturning Circulation and the attendant heat redistribution. A transient model simulation of the last deglaciation suggests that hydrologic changes, including a southward shift in the Intertropical Convergence Zone (ITCZ) which likely occurred during these northern hemisphere cold events, coupled with oceanic advection and mixing, resulted in increased salinity in the Indonesian region of the IPWP and the eastern tropical Pacific, which is recorded by the d18Osw proxy. Based on our observations and modeling results we suggest the interhemispheric temperature gradient directly controls the tropical hydrologic cycle on these time scales, which in turn mediates poleward atmospheric heat transport.
    Keywords: Center for Marine Environmental Sciences; IMAGES; International Marine Global Change Study; MARUM
    Type: Dataset
    Format: application/zip, 4 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Hollstein, Martina; Mohtadi, Mahyar; Rosenthal, Yair; Moffa-Sanchez, Paola; Oppo, Delia W; Martínez Méndez, Gema; Steinke, Stephan; Hebbeln, Dierk (2017): Stable Oxygen Isotopes and Mg/Ca in Planktic Foraminifera From Modern Surface Sediments of the Western Pacific Warm Pool: Implications for Thermocline Reconstructions. Paleoceanography, 32(11), 1174-1194, https://doi.org/10.1002/2017PA003122
    Publication Date: 2023-03-03
    Description: Mg/Ca and stable oxygen isotope compositions (d18O) of planktic foraminifera tests are commonly used as proxies to reconstruct past ocean conditions including variations in the vertical water column structure. Accurate proxy calibrations require thorough regional studies, since parameters such as calcification depth and temperature of planktic foraminifera depend on local environmental conditions. Here we present radiocarbon-dated, modern surface sediment samples and water column data (temperature, salinity, and seawater d18O) from the Western Pacific Warm Pool. Seawater d18O (d18OSW) and salinity are used to calculate individual regressions for western Pacific surface and thermocline waters (d18OSW = 0.37 × S-12.4 and d18OSW = 0.33 × S-11.0). We combine shell d18O and Mg/Ca with water column data to estimate calcification depths of several planktic foraminifera and establish regional Mg/Ca-temperature calibrations. Globigerinoides ruber, Globigerinoides elongatus, and Globigerinoides sacculifer reflect mixed layer conditions. Pulleniatina obliquiloculata and Neogloboquadrina dutertrei and Globorotalia tumida preserve upper and lower thermocline conditions, respectively. Our multispecies Mg/Ca-temperature calibration (Mg/Ca = 0.26exp0.097*T) matches published regressions. Assuming the same temperature sensitivity in all species, we propose species-specific calibrations that can be used to reconstruct upper water column temperatures. The Mg/Ca temperature dependencies of G. ruber, G. elongatus, and G. tumida are similar to published equations. However, our data imply that calcification temperatures of G. sacculifer, P. obliquiloculata, and N. dutertrei are exceptionally warm in the western tropical Pacific and thus underestimated by previously published calibrations. Regional Mg/Ca-temperature relations are best described by Mg/Ca = 0.24exp0.097*T for G. sacculifer and by Mg/Ca = 0.21exp0.097*T for P. obliquiloculata and N. dutertrei.
    Keywords: Center for Marine Environmental Sciences; MARUM
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Hollstein, Martina; Mohtadi, Mahyar; Rosenthal, Yair; Prange, Matthias; Oppo, Delia W; Martínez Méndez, Gema; Tachikawa, Kazuyo; Moffa-Sanchez, Paola; Steinke, Stephan; Hebbeln, Dierk (2018): Variations in Western Pacific Warm Pool surface and thermocline conditions over the past 110,000 years: Forcing mechanisms and implications for the glacial Walker circulation. Quaternary Science Reviews, 201, 429-445, https://doi.org/10.1016/j.quascirev.2018.10.030
    Publication Date: 2023-03-03
    Description: Surface and thermocline conditions of the Western Pacific Warm Pool (WPWP) reflect changes in regional and basin scale ocean and atmosphere circulations and in turn may affect climate globally. Previous studies suggest that a range of factors influences the WPWP on different timescales, however the precise forcings and mechanisms are unclear. Combining surface and thermocline records from sediment cores offshore Papua New Guinea we explore the influence of local and remote processes on the WPWP in response to astronomical forcing and changing glacial-interglacial boundary conditions over the past 110 kyr. We find that thermocline temperatures change with variations in Earth's obliquity with higher temperatures coinciding with high obliquity, which is attributed to variations in subduction and advection of the South Pacific Tropical Water. In contrast, rainfall variations associated with meridional migrations of the Intertropical Convergence Zone are primarily driven by changes in insolation due to precession. Records of bulk sedimentary Ti/Ca and foraminiferal Nd/Ca indicate an additional influence of obliquity, which, however, cannot unambiguously be related to changes in precipitation. Finally, our results suggest a thermocline deepening during the Last Glacial Maximum (LGM). A compilation of available proxy records illustrates a dipole-like pattern of LGM thermocline depth anomalies with a shoaling (deepening) in the northern (southern) WPWP. A comparison of the proxy compilation with an ensemble of Paleoclimate Model Intercomparison Project (PMIP) climate model simulations reveals that the spatial pattern of LGM thermocline depth anomalies is mainly attributable to a contraction of the Pacific Walker circulation on its western side.
    Keywords: Center for Marine Environmental Sciences; MARUM
    Type: Dataset
    Format: application/zip, 4 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Tierney, Jessica E; Oppo, Delia W; Rosenthal, Yair; Russell III, James M; Linsley, Braddock K (2010): Coordinated hydrological regimes in the Indo-Pacific region during the past two millennia. Paleoceanography, 25(1), PA1102, https://doi.org/10.1029/2009PA001871
    Publication Date: 2023-05-12
    Description: Instrumental data suggest that major shifts in tropical Pacific atmospheric dynamics and hydrology have occurred within the past century, potentially in response to anthropogenic warming. To better understand these trends, we use the hydrogen isotopic ratios of terrestrial higher plant leaf waxes (DDwax) in marine sediments from southwest Sulawesi, Indonesia, to compile a detailed reconstruction of central Indo-Pacific Warm Pool (IPWP) hydrologic variability spanning most of the last two millennia. Our paleodata are highly correlated with a monsoon reconstruction from Southeast Asia, indicating that intervals of strong East Asian summer monsoon (EASM) activity are associated with a weaker Indonesian monsoon (IM). Furthermore, the centennial-scale oscillations in our data follow known changes in Northern Hemisphere climate (e.g., the Little Ice Age and Medieval Warm Period) implying a dynamic link between Northern Hemisphere temperatures and IPWP hydrology. The inverse relationship between the EASM and IM suggests that migrations of the Intertropical Convergence Zone and associated changes in monsoon strength caused synoptic hydrologic shifts in the IPWP throughout most of the past two millennia.
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Rosenthal, Yair; Lear, Caroline H; Oppo, Delia W; Linsley, Braddock K (2006): Temperature and carbonate ion effects on Mg/Ca and Sr/Ca ratios in benthic foraminifera: Aragonitic species Hoeglundina elegans. Paleoceanography, 21(1), PA1007, https://doi.org/10.1029/2005PA001158
    Publication Date: 2023-05-12
    Description: Core top samples from Atlantic (Little Bahama Banks (LBB)) and Pacific (Hawaii and Indonesia) depth transects have been analyzed in order to assess the influence of bottom water temperature (BWT) and aragonite saturation levels on Mg/Ca and Sr/Ca ratios in the aragonitic benthic foraminifer Hoeglundina elegans. Both the Mg/Ca and Sr/Ca ratios in H. elegans tests show a general decrease with increasing water depth. Although at each site the decreasing trends are consistent with the in situ temperature profile, Mg/Ca and Sr/Ca ratios in LBB are substantially higher than in Indonesia and Hawaii at comparable water depths with a greater difference observed with increasing water depth. Because we find no significant difference between results obtained on "live" and "dead" specimens, we propose that these differences are due to primary effects on the metal uptake during test formation. Evaluation of the water column properties at each site suggests that in situ CO3 ion concentrations play an important role in determining the H. elegans Mg/Ca and Sr/Ca ratios. The CO3 ion effect is limited, however, only to aragonite saturation levels ([DeltaCO3]aragonite) below 15 µmol/kg. Above this level, temperature exerts a dominant effect. Accordingly, we propose that Mg/Ca and Sr/Ca in H. elegans tests can be used to reconstruct thermocline temperatures only in waters oversaturated with respect to the mineral aragonite using the following relationships: Mg/Ca = (0.034 ± 0.002)BWT + (0.96 ± 0.03) and Sr/Ca = (0.060 ± 0.002)BWT + (1.53 ± 0.03) (for [DeltaCO3]aragonite 〉 15 µmol/kg). The standard error associated with these equations is about ±1.1°C. Reconstruction of deeper water temperatures is complicated because in undersaturated waters, changes in Mg/Ca and Sr/Ca ratios reflect a combination of changes in [CO3] and BWT. Overall, we find that Sr/Ca, rather than Mg/Ca, in H. elegans may be a more accurate proxy for reconstructing paleotemperatures.
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Rosenthal, Yair; Boyle, Edward A; Labeyrie, Laurent D (1997): Last Glacial Maximum paleochemistry and deepwater circulation in the Southern Ocean: Evidence from foraminiferal cadmium. Paleoceanography, 12(6), 787-796, https://doi.org/10.1029/97PA02508
    Publication Date: 2023-05-12
    Description: South Atlantic benthic foraminiferal Cd/Ca shows no glacial-interglacial variation, suggesting that the glacial contribution of North Atlantic Deep Water to the Southern Ocean was not much different than at present. In contrast, Cd/Ca in southeast Indian Ridge cores show lower glacial bottom water Cd, comparable to levels in intermediate depths of the North Atlantic and significantly lower than in the deep South Atlantic. Low glacial Cd/Ca was also recorded in planktonic foraminifera, suggesting a substantial decrease in the nutrient concentration of Subantarctic surface water during the glacial maximum which most likely was caused by increased biological productivity. The Cd data are inconsistent with low glacial benthic foraminiferal d13C which suggest higher nutrient concentration. We propose that the low Cd/Ca in the Southeast Indian Ridge records reflects a local source of nutrient-depleted deepwater, formed during the last glacial maximum by open-ocean convection near the Antarctic Polar Front, downstream of the Kerguelene Plateau. If this source was limited to the southeast Indian basin then its impact on the overall chemistry of glacial Circumpolar Deepwater was rather small. However, if during glaciations open-ocean convection became the dominant mode of bottom water formation, it might have had a greater impact on CPDW chemistry.
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-03-25
    Keywords: AGE; Argilloecia; BJ8-03-70GGC; Bradleya; GGC; Giant gravity corer; Index; Krithe; Ostracoda, other; Species diversity
    Type: Dataset
    Format: text/tab-separated-values, 276 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Iwatani, Hokuto; Yasuhara, Moriaki; Rosenthal, Yair; Linsley, Braddock K (2018): Intermediate-water dynamics and ocean ventilation effects on the Indonesian Throughflow during the past 15,000 years: Ostracod evidence. Geology, https://doi.org/10.1130/G40177.1
    Publication Date: 2023-01-13
    Description: The Indonesian Throughflow (ITF) is thought to influence thermohaline circulation dynamics and is important for understanding global climate and the marine ecosystem. The physical and chemical properties of North Pacific Intermediate Water (NPIW) and the underlying deep water incorporated into the ITF appear to be the result of climate-related preconditioning in the North and South Pacific. Thus, these high-latitude source waters play an important role in the Indo-Pacific oceanography. Here, we present the results of down-core faunal analyses of fossil ostracods (Crustacea) that we argue reflect NPIW variability in the central part of the Makassar Strait in the ITF over the past 15 k.y. The results show that the warm-water and low-oxygen–water fauna, and species diversity, rapidly increased at ca. 12 ka, reaching maxima during the Younger Dryas (YD). We interpret the faunal change and the diversity maximum at ca. 12 ka as a response to the stagnation of intermediate water due to the decline in ITF intensity during the YD. After ca. 7 ka, the ostracod faunal composition clearly changed from a relatively shallower, warmer, and low-oxygen fauna to a relatively deeper, colder, and high-oxygen fauna. Our interpretation is that the ostracod fauna was responding to the deglacial–early Holocene sea-level rise and the ventilation variations due to the mixing of the NPIW and the underlying deep water. The intermediate-water environment and the ecosystem in the ITF could have been driven by the intensification of the influence of the underlying deep water, caused by changes in the southern high-latitude source due to the latitudinal displacements of the southwesterly winds.
    Keywords: BJ8-03-70GGC; GGC; Giant gravity corer
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-01-30
    Description: This data set contains a compilation of records of sea-surface and thermocline temperatures, derived from planktonic foraminifera Mg/Ca, for the Indo-Pacific Warm Pool (ranges 14.8°N-13.1°S, 115.2°E-158.0°E) over the past 25,000 years. It contains two sets of data-sheets (six sheets). Set 1: the mean anomaly stacks of sea-surface temperature anomaly )(SSTA, sheet 1), thermocline water temperature anomaly (TWTA, sheet 2), oxygen isotope composition of Globigerinoides ruber (Gr-A, sheet 3) and surface water oxygen isotope composition (Δδ18Osw, sheet 4) of IPWP over the last 25 ka. Set 2: the records of Mg/Ca and calibrated temperatures of Cores MD10-3340 (0.52°S, 128.72°E, sheet 5), SO18480 (12.06°S, 121.65°E, sheet 6) and KX21-2 (1.42°S, 157.98°E, sheet 7) firstly reported in this study.
    Keywords: Deglaciation; Holocene; Indo-Pacific Warm Pool; LGM; Thermocline
    Type: Dataset
    Format: application/zip, 4 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Moffa-Sanchez, Paola; Rosenthal, Yair; Babila, Tali L; Mohtadi, Mahyar; Zhang, Xu (2019): Temperature Evolution of the Indo‐Pacific Warm Pool Over the Holocene and the Last Deglaciation. Paleoceanography and Paleoclimatology, 34(7), 1107-1123, https://doi.org/10.1029/2018PA003455
    Publication Date: 2023-01-30
    Description: The Indo-Pacific Warm Pool (IPWP) contains the warmest surface ocean waters on our planet. Changes in the extent and position of the IPWP likely impacted the tropical and global climate in the past. To put recent ocean changes into a longer temporal context, we present new paleoceanographic sea surface temperature reconstructions from off Papua New Guinea (RR1313-23PC: 4.4939°S, 145.6703°E, 712 m water depth) which is at the heart of the Western Pacific Warm Pool (WPWP), which is the warmest region within the IPWP, across the last 17,000 years. A new surface temperature dataset from the northeast South China Sea is also presented (ODP1144: 20.053°N, 117.4189°E; water depth 2037 m). In both locations we use Mg/Ca measurements on G.ruber s.s. (white) to calculate sea surface temperatures.
    Keywords: G.ruber; Holocene; Mg/Ca; Western Pacific
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...