GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © The Oceanography Society, 2012. This article is posted here by permission of The Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 25, no. 3 (2012): 40-53, doi:10.5670/oceanog.2012.73.
    Description: In search of an explanation for some of the greenest waters ever seen in coastal Antarctica and their possible link to some of the fastest melting glaciers and declining summer sea ice, the Amundsen Sea Polynya International Research Expedition (ASPIRE) challenged the capabilities of the US Antarctic Program and RVIB Nathaniel B. Palmer during Austral summer 2010–2011. We were well rewarded by both an extraordinary research platform and a truly remarkable oceanic setting. Here we provide further insights into the key questions that motivated our sampling approach during ASPIRE and present some preliminary findings, while highlighting the value of the Palmer for accomplishing complex, multifaceted oceanographic research in such a challenging environment.
    Description: This project was funded by the National Science Foundation Office of Polar Programs, Antarctic Organisms and Ecosystems (ANT-0839069 to PY, ANT-0838995 to RS, ANT-0838975 to SS, ANT-0838995 to OS, ANT- 0944727 to KA, and ANT-0839012 to Hugh Ducklow), and the Swedish Research Council (Grant 2008-6430 to SB and LR), with logistic support from the Swedish Polar Research Secretariat and Raytheon Polar Services.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Microbiology 8 (2017): 882, doi:10.3389/fmicb.2017.00882.
    Description: Spatial and temporal patterns in microbial biodiversity across the Amazon river-ocean continuum were investigated along ∼675 km of the lower Amazon River mainstem, in the Tapajós River tributary, and in the plume and coastal ocean during low and high river discharge using amplicon sequencing of 16S rRNA genes in whole water and size-fractionated samples (0.2–2.0 μm and 〉2.0 μm). River communities varied among tributaries, but mainstem communities were spatially homogeneous and tracked seasonal changes in river discharge and co-varying factors. Co-occurrence network analysis identified strongly interconnected river assemblages during high (May) and low (December) discharge periods, and weakly interconnected transitional assemblages in September, suggesting that this system supports two seasonal microbial communities linked to river discharge. In contrast, plume communities showed little seasonal differences and instead varied spatially tracking salinity. However, salinity explained only a small fraction of community variability, and plume communities in blooms of diatom-diazotroph assemblages were strikingly different than those in other high salinity plume samples. This suggests that while salinity physically structures plumes through buoyancy and mixing, the composition of plume-specific communities is controlled by other factors including nutrients, phytoplankton community composition, and dissolved organic matter chemistry. Co-occurrence networks identified interconnected assemblages associated with the highly productive low salinity near-shore region, diatom-diazotroph blooms, and the plume edge region, and weakly interconnected assemblages in high salinity regions. This suggests that the plume supports a transitional community influenced by immigration of ocean bacteria from the plume edge, and by species sorting as these communities adapt to local environmental conditions. Few studies have explored patterns of microbial diversity in tropical rivers and coastal oceans. Comparison of Amazon continuum microbial communities to those from temperate and arctic systems suggest that river discharge and salinity are master variables structuring a range of environmental conditions that control bacterial communities across the river-ocean continuum.
    Description: This research is funded by the Gordon and Betty Moore Foundation (GBMF 2293 and 2928), the U.S. National Science Foundation (OCE-0934095, OCE-0424602, DEB-1256724), and the São Paulo Research Foundation (FAPESP 12/51187-0).
    Keywords: Amazon River ; Tropical Atlantic Ocean ; River plume ; Microbial diversity ; Freshwater bacteria ; Marine bacteria ; Diatom-diazotroph assemblage ; Columbia River
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publication Date: 2022-10-31
    Description: Dataset: Arctic Nitrogen Fixation Rates
    Description: This dataset provides rates of nitrogen fixation for the coastal Chukchi Sea near Barrow, Alaska. Nitrogen fixation supplies ‘new’ nitrogen to the global ocean and supports primary production and impacts global biogeochemical cycles. Historically, nitrogen fixation in marine waters was considered a predominantly warm water process but this and other recent studies have shown that nitrogen fixation is occurring at low rates in polar waters. This dataset reports rates of 3.5 – 17.2 nmol N L-1 d-1 in the ice-free coastal Alaskan Arctic. Additional investigations of high-latitude marine diazotrophic physiology are required to refine these N2 fixation estimates. For a complete list of measurements, refer to the supplemental document 'Field_names.pdf', and a full dataset description is included in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: http://www.bco-dmo.org/dataset/701789
    Description: NSF Arctic Sciences (NSF ARC) PLR-0909839
    Keywords: Nitrogen fixation ; Temperature ; Arctic Ocean ; Nitrogen ; Nutrients ; Chukchi Sea
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-10-20
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 125(7), (2020): e2020JC016185, doi:10.1029/2020JC016185.
    Description: As mass loss from the Greenland Ice Sheet accelerates, this modeling study considers how meltwater inputs to the ocean can impact marine ecosystems using a simplified fjord scenario. At marine‐terminating glaciers in Greenland fjords, meltwater can be delivered far below the sea surface, both as subglacial runoff (from atmosphere‐driven surface melt) and as basal melt (from ocean heat). Such delivery can result in buoyancy‐driven upwelling and the upward entrainment of nutrient‐rich deep water, which can support phytoplankton growth in fjord surface waters. For this study, we use an idealized fjord‐scale model to investigate which properties of glaciers and fjords govern the transport of buoyantly upwelled nutrients from fjords. We model the influence of fjord geometry, hydrology, wind, tides, and phytoplankton growth within the fjord on meltwater‐driven nutrient export to the ocean. We use the Regional Ocean Modeling System (ROMS) coupled to a buoyant plume model and a biogeochemical model to simulate physical and biogeochemical processes within an idealized tidewater glacial fjord. Results show that meltwater‐driven nutrient export increases with larger subglacial discharge rates and deeper grounding lines, features that are both likely to change with continued ice sheet melting. Nutrient export decreases with longer residence times, allowing greater biological drawdown. While the absence of a coastal current in the model setup prevents the downstream advection of exported nutrients, results suggest that shelf‐forced flows could influence nutrient residence time within fjords. This simplified model highlights key uncertainties requiring further observation to understand ecological impacts of Greenland mass loss.
    Description: This project was supported by a University of Georgia Presidential Scholarship and NSF Graduate Research Fellowship (GRFP) (to HO), NASA‐IDS NNX14AD98G, and by NASA Physical Oceanography program (80NSSC18K0766).
    Description: 2020-12-22
    Keywords: Fjord circulation ; Subglacial discharge plumes ; Nutrient export ; Greenland marine‐terminating glaciers ; Biogeochemical cycling ; Primary productivity
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-27
    Description: The Surface Ocean – Lower Atmosphere Study (SOLAS) (http://www.solas-int.org/) is an international research initiative focused on understanding the key biogeochemical-physical interactions and feedbacks between the ocean and atmosphere that are critical elements of climate and global biogeochemical cycles. Following the release of the SOLAS Decadal Science Plan (2015-2025) (Brévière et al., 2016), the Ocean-Atmosphere Interaction Committee (OAIC) was formed as a subcommittee of the Ocean Carbon and Biogeochemistry (OCB) Scientific Steering Committee to coordinate US SOLAS efforts and activities, facilitate interactions among atmospheric and ocean scientists, and strengthen US contributions to international SOLAS. In October 2019, with support from OCB, the OAIC convened an open community workshop, Ocean-Atmosphere Interactions: Scoping directions for new research with the goal of fostering new collaborations and identifying knowledge gaps and high-priority science questions to formulate a US SOLAS Science Plan. Based on presentations and discussions at the workshop, the OAIC and workshop participants have developed this US SOLAS Science Plan. The first part of the workshop and this Science Plan were purposefully designed around the five themes of the SOLAS Decadal Science Plan (2015-2025) (Brévière et al., 2016) to provide a common set of research priorities and ensure a more cohesive US contribution to international SOLAS.
    Description: This report was developed with federal support of NSF (OCE-1558412) and NASA (NNX17AB17G).
    Repository Name: Woods Hole Open Access Server
    Type: Working Paper
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-26
    Description: © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Microbiology 5 (2014): 646, doi:10.3389/fmicb.2014.00646.
    Description: Rising temperatures and changing winds drive the expansion of the highly productive polynyas (open water areas surrounded by sea ice) abutting the Antarctic continent. Phytoplankton blooms in polynyas are often dominated by the haptophyte Phaeocystis antarctica, and they generate the organic carbon that enters the resident microbial food web. Yet, little is known about how Phaeocystis blooms shape bacterial community structures and carbon fluxes in these systems. We identified the bacterial communities that accompanied a Phaeocystis bloom in the Amundsen Sea polynya during the austral summers of 2007–2008 and 2010–2011. These communities are distinct from those determined for the Antarctic Circumpolar Current (ACC) and off the Palmer Peninsula. Diversity patterns for most microbial taxa in the Amundsen Sea depended on location (e.g., waters abutting the pack ice near the shelf break and at the edge of the Dotson glacier) and depth, reflecting different niche adaptations within the confines of this isolated ecosystem. Inside the polynya, P. antarctica coexisted with the bacterial taxa Polaribacter sensu lato, a cryptic Oceanospirillum, SAR92 and Pelagibacter. These taxa were dominated by a single oligotype (genotypes partitioned by Shannon entropy analysis) and together contributed up to 73% of the bacterial community. Size fractionation of the bacterial community [〈3 μm (free-living bacteria) vs. 〉3 μm (particle-associated bacteria)] identified several taxa (especially SAR92) that were preferentially associated with Phaeocystis colonies, indicative of a distinct role in Phaeocystis bloom ecology. In contrast, particle-associated bacteria at 250 m depth were enriched in Colwellia and members of the Cryomorphaceae suggesting that they play important roles in the decay of Phaeocystis blooms.
    Description: This work received financial support from NSF Antarctic Sciences awards ANT-1142095 (Anton F. Post), ANT-0839069 and ANT-0741409 (Patricia L. Yager), and ANT-0839012 (Hugh W. Ducklow). We further acknowledge the support by “Oden Southern Ocean,” SWEDARP 2010/2011, a project organized by the Swedish Polar Research Secretariat and National Science Foundation Office of Polar Programs.
    Keywords: Amundsen Sea polynya ; Phytoplankton bloom ; Phaeocystis antarctica ; Microbial community structure ; Mutualism
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: application/vnd.ms-excel
    Format: image/jpeg
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-26
    Description: Dataset: INSPIRE 1-D ROMS model output
    Description: 1-D vertical mixing/biogeochemical Regional Ocean Modeling System (ROMS) output of October 2010 - March 2011 of the Amundsen Sea Polynya, modeled at twelve bloom stations. Data are 3-hourly averages, and saved in NetCDF files. In the NetCDF files, data are distributed over a 6x6 grid with 30 depths (ranging from the surface down to 210 m, with higher resolution near the surface). ocean_avg.nc files are the standard model output, while files named ocean_avg_sensitivity_lowWW.nc are from runs using a lower winter water initial dissolved iron concentration. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/765252
    Description: NSF Office of Polar Programs (formerly NSF PLR) (NSF OPP) OPP-1443657, NSF Office of Polar Programs (formerly NSF PLR) (NSF OPP) OPP-1443604, NSF Office of Polar Programs (formerly NSF PLR) (NSF OPP) OPP-1443315, NSF Office of Polar Programs (formerly NSF PLR) (NSF OPP) OPP-1443569
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publication Date: 2022-05-26
    Description: Dataset: Model-building biogeochemical data set from ASPIRE
    Description: Hydrographic profiles and discrete water samples were collected from each station using a conventional shipboard conductivity-temperature-depth (CTD; Sea-Bird 911+) sensor and a 24 × 10 L Niskin bottle rosette sampler (General Oceanics). Potential temperature (θ) and salinity (S) were recorded continuously as a function of depth and at the moment of Niskin bottle closure (see Yager et al., 2016). Trace-metal samples were collected similarly using a trace-metal-clean CTD-rosette system (see Sherrell et al., 2015) that was deployed at the same location just before or after the conventional CTD. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/765081
    Description: NSF Antarctic Sciences (NSF ANT) ANT-0839069, NSF Antarctic Sciences (NSF ANT) ANT-0944727, NSF Antarctic Sciences (NSF ANT) ANT-0839012, NSF Antarctic Sciences (NSF ANT) ANT-0838995, NSF Antarctic Sciences (NSF ANT) ANT-0838975, NSF Office of Polar Programs (formerly NSF PLR) (NSF OPP) OPP-1443657, NSF Office of Polar Programs (formerly NSF PLR) (NSF OPP) OPP-1443604, NSF Office of Polar Programs (formerly NSF PLR) (NSF OPP) OPP-1443315, NSF Office of Polar Programs (formerly NSF PLR) (NSF OPP) OPP-1443569
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-27
    Description: Numerous coastal polynyas fringe the Antarctic continent and strongly influence the productivity of Antarctic shelf systems. Of the 46 Antarctic coastal polynyas documented in a recent study, the Amundsen Sea Polynya (ASP) stands out as having the highest net primary production per unit area. Incubation experiments suggest that this productivity is partly controlled by the availability of dissolved iron (dFe). As a first step toward understanding the iron supply of the ASP, we introduce four plausible sources of dFe and simulate their steady spatial distribution using conservative numerical tracers. The modeled distributions replicate important features from observations including dFe maxima at the bottom of deep troughs and enhanced concentrations near the ice shelf fronts. A perturbation experiment with an idealized drawdown mimicking summertime biological uptake and subsequent resupply suggests that glacial meltwater and sediment-derived dFe are the main contributors to the prebloom dFe inventory in the top 100 m of the ASP. The sediment-derived dFe depends strongly on the buoyancy-driven overturning circulation associated with the melting ice shelves (the “meltwater pump”) to add dFe to the upper 300 m of the water column. The results support the view that ice shelf melting plays an important direct and indirect role in the dFe supply and delivery to polynyas such as the ASP. The data are from a numerical model simulating the sea ice and ocean conditions in the Amundsen Sea over the period Jan. 1, 2006 to Dec. 31, 2013. The data files provide the daily averaged model fields during this period. The numerical model and experiment are thoroughly described in St-Laurent et al., J. Geophys. Res. Oceans, doi:10.1002/2017jc013162.
    Description: NSF Office of Polar Programs (formerly NSF PLR) (NSF OPP) OPP-1443657 NSF Office of Polar Programs (formerly NSF PLR) (NSF OPP) OPP-1443604 NSF Office of Polar Programs (formerly NSF PLR) (NSF OPP) OPP-1443315 NSF Office of Polar Programs (formerly NSF PLR) (NSF OPP) OPP-1443569
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-26
    Description: Dataset: AN10-12 Surface pCO2 and Chl a
    Description: Surface pCO2, bottle-corrected Chl a, and shipboard wind speed from three cruises conducted off the Northeast coast of Brazil in the Amazon River Plume as part of the ANACONDAS project. Cruise AN10 took place on R/V Knorr (KN197-08) from May-June 2010; cruise AN11 took place on R/V Melville (MV1110) from September-October 2011; and cruise AN12 took place on R/V Atlantis (AT21-04) during July 2012. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/849870
    Description: NSF Division of Ocean Sciences (NSF OCE) OCE-0934095, Gordon and Betty Moore Foundation: Marine Microbiology Initiative (MMI) GBMF2293, Gordon and Betty Moore Foundation: Marine Microbiology Initiative (MMI) GBMF2928, NSF Division of Ocean Sciences (NSF OCE) OCE-1133277
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...