GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (462)
Document type
  • 1
    ISSN: 1751-8369
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geography , Geosciences
    Notes: Kongsfjorden is a glacial fjord in the Arctic (Svalbard) that is influenced by both Atlantic and Arctic water masses and harbours a mixture of boreal and Arctic flora and fauna. Inputs from large tidal glaciers create steep environmental gradients in sedimentation and salinity along the length of this fjord. The glacial inputs cause reduced biomass and diversity in the benthic community in the inner fjord. Zooplankton suffers direct mortality from the glacial outflow and primary production is reduced because of limited light levels in the turbid, mixed inner waters. The magnitude of the glacial effects diminishes towards the outer fjord. Kongsfjorden is an important feeding ground for marine mammals and seabirds. Even though the fjord contains some boreal fauna, the prey consumed by upper trophic levels is mainly Arctic organisms. Marine mammals constitute the largest top-predator biomass, but seabirds have the largest energy intake and also export nutrients and energy out of the marine environment. Kongsfjorden has received a lot of research attention in the recent past. The current interest in the fjord is primarily based on the fact that Kongsfjorden is particularly suitable as a site for exploring the impacts of possible climate changes, with Atlantic water influx and melting of tidal glaciers both being linked to climate variability. The pelagic ecosystem is likely to be most sensitive to the Atlantic versus Arctic influence, whereas the benthic ecosystem is more affected by long-term changes in hydrography as well as changes in glacial runoff and sedimentation. Kongsfjorden will be an important Arctic monitoring site over the coming decades and a review of the current knowledge, and a gap analysis, are therefore warranted. Important knowledge gaps include a lack of quantitative data on production, abundance of key prey species, and the role of advection on the biological communities in the fjord.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 7 (1984), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract Cells of Porphyra umbilicalis show a biphasic osmotic regulatory response. After transfer from 1 × into 3.5 × artificial seawater medium (osmotic upshock) the protoplasts shrink rapidly, then recover their original size within 3 h and continue to increase over the next 14 d. After retransfer from 3.5 × into 1 × medium (osmotic downshock) the protoplasts swell immediately and then adjust to the normal size in 1 x medium. Parallel to the shrinkage of the protoplasts after osmotic upshocks the plasmalemma at first gets a wavy surface which becomes smooth again during the following adaptation process. Immediately after osmotic upshock the vacuolar volume increases and it decreases drastically after osmotic downshock. After osmotic upshocks only small vacuoles are present at first. In adapted plants, however, the vacuolar system is mainly composed of large vacuoles. The volume of the protoplasm without the vacuoles is regulated osmotically. Parallel to the increase in the vacuolar volume after osmotic upshocks there is an increase in the number of intramembraneous particles on the PF-face of the tonoplast. This high value is reduced rapidly to the original number after osmotic downshock. The findings are discussed in relation to the function of the vacuoles as compartments of inorganic ion accumulation during osmotic adaptation.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1751-8369
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geography , Geosciences
    Notes: Kongsfjorden-Krossfjorden and the adjacent West Spitsbergen Shelf meet at the common mouth of the two fjord arms. This paper presents our most up-to-date information about the physical environment of this fjord system and identifies important gaps in knowledge. Particular attention is given to the steep physical gradients along the main fjord axis, as well as to seasonal environmental changes. Physical processes on different scales control the large-scale circulation and small-scale (irreversible) mixing of water and its constituents. It is shown that, in addition to the tide, run-off (glacier ablation, snowmelt, summer rainfall and ice calving) and local winds are the main driving forces acting on the upper water masses in the fjord system. The tide is dominated by the semi-diurnal component and the freshwater supply shows a marked seasonal variation pattern and also varies interannually. The wind conditions are characterized by prevailing katabatic winds, which at times are strengthened by the geostrophic wind field over Svalbard. Rotational dynamics have a considerable influence on the circulation patterns within the fjord system and give rise to a strong interaction between the fjord arms. Such dynamics are also the main reason why variations in the shelf water density field, caused by remote forces (tide and coastal winds), propagate as a Kelvin wave into the fjord system. This exchange affects mainly the intermediate and deep water, which is also affected by vertical convection processes driven by cooling of the surface and brine release during ice formation in the inner reaches of the fjord arms. Further aspects covered by this paper include the geological and geomorphological characteristics of the Kongsfjorden area, climate and meteorology, the influence of glaciers, freshwater supply, sea ice conditions, sedimentation processes as well as underwater radiation conditions. The fjord system is assumed to be vulnerable to possible climate changes, and thus is very suitable as a site for the demonstration and investigation of phenomena related to climate change.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Copenhagen : Munksgaard International Publishers
    Physiologia plantarum 112 (2001), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The phycobilisomes (PBS), the light-harvesting antennae, from the endemic Antarctic red macroalga Palmaria decipiens were isolated on discontinuous sucrose gradients in two discrete bands and not in one as expected. To exclude methodical faults, we also isolated PBS from the temperate Palmaria palmata and the unicellular red algae Porphyridium cruentum and Rhodella violacea. In P. palmata the PBS were separated in two discrete bands, whereas the PBS from Porphyridium and Rhodella were found in one band. The double-banded PBS (PBSup and PBSlow) from P. decipiens were further characterized by absorption and fluorescence spectroscopy, native and SDS-PAGE as well as by negative staining. The phycobiliproteins RIII-phycoerythrin, RI-phycocyanin and allophycocyanin were identified and 3 γ-subunits were described. The PBSup and PBSlow showed no significant differences in their absorption spectra and phycobiliprotein ratios although the negative stained PBSlow were smaller. Differences were found in their low molecular mass subunit complexes, which are assumed to be r-phycoerythrin. The polypeptide pattern of the PBSup and PBSlow showed no differences in the molecular masses of their subunits and linker polypeptides, but in their percentage distribution. The results suggest that the PBSlow is a closer packed and PBSup a little more loosely aggregated hemiellipsiodal PBS form. We discuss the ecophysiological function of two PBS forms in P. decipiens and suggest advantages in the rapid acclimation to changes in environmental light conditions.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: In field studies conducted at the Kongsfjord (Spitsbergen), the effect of filtered natural radiation conditions (solar without ulraviolet [UV]-A+UV-B, solar without UV-B, solar) on photosynthesis and the metabolism of UV-absorbing mycosporine-like amino acids (MAAs) in the marine red alga Devaleraea ramentacea have been studied. While solar treatment without UV-A+UV-B did not affect photosynthesis during the course of a day, solar without UV-B and the full solar spectrum led to a strong inhibition. However, after offset of the various radiation conditions, all algae fully recovered. Isolates collected from different depths were exposed in the laboratory to artificial fluence rates of photosynthetic active radiation (PAR), PAR+UV-A, and PAR+UV-A+UV-B. The photosynthetic capacity was affected in accordance with the original sampling depth, i.e. shallow-water isolates were more resistant than algae from deeper waters, indicating that D. ramentacea is able to acclimate to changes in irradiance. Seven different UV-absorbing MAAs were detected in this alga, namely mycosporine-glycine, shinorine, porphyra-334, palythine, asterina-330, palythinol, and palythene. The total amount of MAAs continuously decreased with increasing collecting depth when sampled in mid June, and algae taken in late August from the same depths contained on average 30–45% higher MAA concentrations, indicating a seasonal effect as well. The presence of increasing MAA contents with decreasing depth correlated with a more insensitive photosynthetic capacity under both UV-A and UV-B treatments. Populations of D. ramentacea collected from 1 m depth, with one fully exposed to solar radiation and the other growing protected as understorey vegetation underneath the kelp Laminaria saccharina, exhibited quantitatively different MAA compositions in the apices. The exposed seaweeds contained 2.5-fold higher MAA values compared with the more shaded algae. Moreover, the exposed isolates showed a strong tissue gradient in MAAs, pigments, and proteins. The green apices contained 5-fold higher MAA contents than the red bases. Transplantation of D. ramentacea from 2 m depth to the surface induced the formation and accumulation of MAAs after 1 week exposure to the full solar spectrum. Control samples which were treated with the solar spectrum without UV-A+B or with solar without UV-B showed unchanged MAA contents, indicating a strong UV-B effect on MAA metabolism. All data well supported the suggested physiological function of MAAs as natural UV sunscreens in macroalgae.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-2056
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In field studies conducted at the Kongsfjord (Spitsbergen) changes of the irradiance in the atmosphere and the sublittoral zone were monitored from the beginning of June until the end of August 1997, to register the minimum and maximum fluxes of ultraviolet and photosynthetically active radiation and to characterise the underwater light climate. Measurements of photosynthesis in three abundant brown algal species (Alaria esculenta, Laminaria saccharina, Saccorhiza dermatodea) were conducted to test whether their photosynthetic performance reflects changing light climate in accordance with depth. Plants sampled at various depths were exposed to controlled fluence rates of photosynthetically active radiation (400–700 nm), UV-A (320–400 nm) and UV-B (280–320 nm). Changes in photosynthetic performance during the treatments were monitored by measuring variable chlorophyll fluorescence of photosystem II. In each species, the degree of inhibition of photosynthesis was related to the original collection depth, i.e. shallow-water isolates were more resistant than plants from deeper waters. The results show that macroalgae acclimate effectively to increasing irradiance levels for both photosynthetically active and ultraviolet radiation. However, the kinetics of acclimation are different within the different species. It is shown that one important strategy to cope with higher irradiance levels in shallow waters is the capability for a faster recovery from high light stress compared to isolates from deeper waters.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Polar biology 23 (2000), S. 609-618 
    ISSN: 1432-2056
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Temperature requirements for growth, photosynthesis and dark respiration were determined for five Antarctic red algal species. After acclimation, the stenothermal species Gigartina skottsbergii and Ballia callitricha grew at 0 or up to 5 °C, respectively; the eurythermal species Kallymenia antarctica, Gymnogongrus antarcticus and Phyllophora ahnfeltioides grew up to 10 °C. The temperature optima of photosynthesis were between 10 and 15 °C in the stenothermal species and between 15 and 25 °C in the eurythermal species, irrespective of the growth temperature. This shows that the temperature optima for photosynthesis are located well below the optima from species of other biogeographical regions, even from the Arctic. Respiratory rates rose with increasing temperatures. In contrast to photosynthesis, no temperature optimum was evident between 0 and 25 °C. Partial acclimation of photosynthetic capacity to growth temperature was found in two species. B. callitricha and Gymnogongrus antarcticus acclimate to 0 °C, and 5 and 0 °C, respectively. But acclimation did in no case lead to an overall shift in the temperature optimum of photosynthesis. B. callitricha and Gymnogongrus antarcticus showed acclimation of respiration to 5 °C, and P. ahnfeltioides to 5 and 10 °C, resulting in a temperature independence of respiration when measured at growth temperature. With respect to the acclimation potential of the species, no distinction can be made between the stenothermal versus the eurythermal group. (Net)photosynthetic capacity:respiration (P:R) ratios showed in all species highest values at 0 °C and decreased continuously to values lower than 1.0 at 25 °C. In turn, the low P:R ratios at higher temperatures are assumed to determine the upper temperature growth limit of the studied species. Estimated daily carbon balance reached values between 4.1 and 30.7 mg C g−1 FW day−1 at 0 °C, 16:8 h light/dark cycle, 12–40 μmol m−2 s−1.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-1130
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract The influence of temperature, light, salinity and nutrient availability on the release of volatile halogenated hydrocarbons was investigated in the Antarctic red macroalgal species Gymnogongrus antarcticus Skottsberg. Compared to standard culture condition, an increase in the release rates of iodocompounds was generally found for the exposure of the alga to altered environmental conditions. Macroalgae exhibited higher release rates after adaptation for two months to the changed factors, than after short-term exposure. Monitoring the release rates during a 24 h incubation period (8.25 h light, 15.75 h darkness) showed that changes between light and dark periods had no influence on the release of volatile halocarbons. Compounds like bromoform and 1-iodobutane exhibited constant release rates during the 24 h period. The formation mechanisms and biological role of volatile organohalogens are discussed. Although marine macroalgae are not considered to be the major source of biogenically-produced volatile organohalogens, they contribute significantly to the bromine and iodine cycles in the environment. Under possible environmental changes like global warming and uncontrolled entrophication of the oceans their significance may be increase.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-2048
    Keywords: Key words: Macroalgae – Photosynthesis – Ribulose-1, 5-bisphosphate carboxylase/oxygenase – UV radiation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract.  Changes in physiological parameters related to photosynthesis were studied in five macroalgal species from Spitsbergen (Monostroma arcticum, Laminaria solidungula, Alaria esculenta, Palmaria palmata, Phycodrys rubens) during a 72-h exposure to UV radiation. Maximal quantum yield of photochemistry (Fv/Fm) and maximal electron transport rate (ETRmax) were measured with a pulse-amplitude-modulated fluorometer; the activity of the Calvin cycle enzymes ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and glyceraldehyde-3-phosphate dehydrogenase (G3PDH) were estimated using a photometric test. Proteins of crude extracts were separated by SDS gel electrophoresis and changes in cellular concentrations of Rubisco were determined. Moreover, the concentration of chlorophyll a (Chl a), and protein content, were measured photometrically. In all species, Chl a content, maximal quantum yield as well as ETRmax decreased during the UV treatment. Changes in ETRmax were related to the changes in the overall activity of Rubisco. Analysis of SDS gels showed that in P. rubens, L. solidungula, M. arcticum and A. esculenta decreasing Rubisco activity partly resulted from a degradation of the enzyme. However, in A. esculenta, the formation of a high-molecular-weight polypeptide was observed. In all species, the activity of Rubisco was more strongly impaired than that of G3PDH. Exposure to UV resulted in loss of total protein only in the deepwater species L. solidungula and P. rubens. The different sensitivities to UV exposure of the species tested reflect their zonation pattern in the field.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Planta 159 (1983), S. 342-346 
    ISSN: 1432-2048
    Keywords: Osmotic regulation ; Porphyra ; Tonoplast (fine structure)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In Porphyra, an intertidal red alga, the fine structure of the tonoplast was studied by freeze-fracture electron microscopy. It was shown that density and size of intramembraneous particles on the protoplasmic fracture face vary with external osmotic potential. The frequency of particles grouped in size classes (calculated per cell) increases with increasing osmotic stress and shows a maximum in 3 to 4 x artificial seawater medium ASP12. It is concluded that the intensity of tonoplast transport, which probably is enhanced with increasing osmotic stress from 1 to 4 x media, is most likely correlated with a change in membrane fine structure of the tonoplast.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...