GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0749-503X
    Keywords: yeast ; genome project ; chromosome IV ; GDH ; SHR3 ; UGA4 ; NHP2 ; HEM3 ; MGT1 ; SHM1 ; ASF2 ; Gly-tRNA ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: The complete nucleotide sequence of a 39 090 bp segment from the left arm of yeast chromosome IV was determined. Twenty-one open reading frames (ORFs) longer than 100 amino acids and a Gly-tRNA gene were discovered. Nine of the 21 ORFs (D0892, D1022, D1037, D1045, D1057, D1204, D1209, D1214, D1219) correspond to the previously sequenced Saccharomyces cerevisiae genes for the NAD-dependent glutamate dehydrogenase (GDH), the secretory component (SHR3), the GABA transport protein (UGA4), the high mobility group-like protein (NHP2), the hydroxymethylbilane synthase (HEM3), the methylated DNA protein-cysteine S-methyltransferase (MGT1), a putative sugar transport protein, the Shm1 protein (SHM1) and the anti-silencing protein (ASF2). The inferred amino acid sequences of 11 ORFs show significant similarity with known proteins from various organisms, whereas the remaining ORF does not share any similarity with known proteins. The nucleotide sequence has been entered in the EMBL data Library under the Accession Number X99000.©1997 John Wiley & Sons, Ltd.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-03-31
    Description: Contourites are deposits formed by along-slope bottom currents and are therefore sensitive to changes in current velocity, sediments supply and paleoceanographic conditions. They are typically associated with high accumulation rates making these archives ideal for paleoenviromental reconstructions. Nevertheless, they are also occasionally affected by winnowing of fine particles and erosion/deposition of allochthonous material, which alters the grain-size and mineralogy. These processes can, as such, promote significant bias in proxy interpretation compared with other pelagic deposits. X-ray fluorescence (XRF) core-scanning is ideal to assess elemental variations in these high accumulation rate sequences. The comparison between lithological changes, Natural Gamma Ray and other parameters with XRF scanning data, along with statistical analysis can provide very useful information to support improved proxy interpretation. Using this approach at Site U1387, (detrital contourite system at Gulf of Cadiz), results indicate that the Zr/Al ratio represents a promising proxy for bottom current speed and show the transition from a hemipelagic to a contouritic system during the Miocene/Pliocene transition. Carbonate content and Ba/Al ratio appear to represent paleo-productivity variations and later to be completely overprinted by current activit y. At Site U1475 (carbonate contourite system at Agulhas Plateau) Zr content is just one artifact associated with high Sr content and the Ca/Sr ratio appears to be a more promising proxy for contourite reconstruction that is influenced by carbonate dissolution by deep corrosive waters. Comparing both locations we can conclude that proxies associated with the continuous background sediment settling over the seafloor (e.g. planktonic foraminifera) do not appear to be severely biased in countourite systems.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    ELSEVIER SCIENCE BV
    In:  EPIC3Global and Planetary Change, ELSEVIER SCIENCE BV, 111, pp. 77-87, ISSN: 0921-8181
    Publication Date: 2019-07-17
    Description: Subtropical Gyres are an important constituent of the ocean–atmosphere system due to their capacity to store vast amounts of warm and saline waters. Here we decipher the sensitivity of the (sub)surface North Atlantic Subtropical Gyre with respect to orbital and millennial scale climate variability between ~ 140 and 70 ka, Marine Isotope Stage (MIS) 5. Using (isotope) geochemical proxy data from surface and thermocline dwelling foraminifers from Blake Ridge off the west coast of North America (ODP Site 1058) we show that the oceanographic development at subsurface (thermocline) level is substantially different from the surface ocean. Most notably, surface temperatures and salinities peak during the penultimate deglaciation (Termination II) and early MIS 5e, implying that subtropical surface ocean heat and salt accumulation might have resulted from a sluggish northward heat transport. In contrast, maximum thermocline temperatures are reached during late MIS 5e when surface temperatures are already declining. We argue that the subsurface warming originated from intensified Ekman downwelling in the Subtropical Gyre due to enhanced wind stress. During MIS 5a-d a tight interplay of the subtropical upper ocean hydrography to high latitude millennial-scale cold events can be observed. At Blake Ridge, the most pronounced of these high latitude cold events are related to surface warming and salt accumulation in the (sub)surface. Similar to Termination II, heat accumulated in the Subtropical Gyre probably due to a reduced Atlantic Meridional Overturning Circulation. Additionally, a southward shift and intensification of the subtropical wind belts lead to a decrease of on-site precipitation and enhanced evaporation, coupled to intensified gyre circulation. Subsequently, the northward advection of this warm and saline water likely contributed to the fast resumption of the overturning circulation at the end of these high latitude cold events.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-06-19
    Description: Tectonically induced changes in oceanic seaways had profound effects on global and regional climate during the Late Neogene. The constriction of the Central American Seaway reached a critical threshold during the early Pliocene ~4.8–4 million years (Ma) ago. Model simulations indicate the strengthening of the Atlantic Meridional Overturning Circulation (AMOC) with a signature warming response in the Northern Hemisphere and cooling in the Southern Hemisphere. Subsequently, between ~4–3 Ma, the constriction of the Indonesian Seaway impacted regional climate and might have accelerated the Northern Hemisphere Glaciation. We here present Pliocene Atlantic interhemispheric sea surface temperature and salinity gradients (deduced from foraminiferal Mg/Ca and stable oxygen isotopes, δ18O) in combination with a recently published benthic stable carbon isotope (δ13C) record from the southernmost extent of North Atlantic Deep Water to reconstruct gateway-related changes in the AMOC mode. After an early reduction of the AMOC at ~5.3 Ma, we show in agreement with model simulations of the impacts of Central American Seaway closure a strengthened AMOC with a global climate signature. During ~3.8–3 Ma, we suggest a weakening of the AMOC in line with the global cooling trend, with possible contributions from the constriction of the Indonesian Seaway.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-08-16
    Description: The intensification of Northern Hemisphere glaciations at the end of the Pliocene epoch marks one of the most substantial climatic shifts of the Cenozoic. Despite global cooling, sea surface temperatures in the high latitude North Atlantic Ocean rose between 2.9–2.7 million years ago. Here we present sedimentary geochemical proxy data from the Gulf of Cadiz to reconstruct the variability of Mediterranean Outflow Water, an important heat source to the North Atlantic. We find evidence for enhanced production of Mediterranean Outflow from the mid-Pliocene to the late Pliocene which we infer could have driven a sub-surface heat channel into the high-latitude North Atlantic. We then use Earth System Models to constrain the impact of enhanced Mediterranean Outflow production on the northward heat transport in the North Atlantic. In accord with the proxy data, the numerical model results support the formation of a sub-surface channel that pumped heat from the subtropics into the high latitude North Atlantic. We further suggest that this mechanism could have delayed ice sheet growth at the end of the Pliocene.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 9 (2008): Q01004, doi:10.1029/2007GC001683.
    Description: New Mg/Ca, Sr/Ca, and published stable oxygen isotope and 87Sr/86Sr data obtained on ostracods from gravity cores located on the northwestern Black Sea slope were used to infer changes in the Black Sea hydrology and water chemistry for the period between 30 to 8 ka B.P. (calibrated radiocarbon years). The period prior to 16.5 ka B.P. was characterized by stable conditions in all records until a distinct drop in δ 18O values combined with a sharp increase in 87Sr/86Sr occurred between 16.5 and 14.8 ka B.P. This event is attributed to an increased runoff from the northern drainage area of the Black Sea between Heinrich Event 1 and the onset of the Bølling warm period. While the Mg/Ca and Sr/Ca records remained rather unaffected by this inflow; they show an abrupt rise with the onset of the Bølling/Allerød warm period. This rise was caused by calcite precipitation in the surface water, which led to a sudden increase of the Sr/Ca and Mg/Ca ratios of the Black Sea water. The stable oxygen isotopes also start to increase around 15 ka B.P., although in a more gradual manner, due to isotopically enriched meteoric precipitation. While Sr/Ca remains constant during the following interval of the Younger Dryas cold period, a decrease in the Mg/Ca ratio implies that the intermediate water masses of the Black Sea temporarily cooled by 1–2°C during the Younger Dryas. The 87Sr/86Sr values drop after the cessation of the water inflow at 15 ka B.P. to a lower level until the Younger Dryas, where they reach values similar to those observed during the Last Glacial Maximum. This might point to a potential outflow to the Mediterranean Sea via the Sea of Marmara during this period. The inflow of Mediterranean water started around 9.3 ka B.P., which is clearly detectable in the abruptly increasing Mg/Ca, Sr/Ca, and 87Sr/86Sr values. The accompanying increase in the δ 18O record is less pronounced and would fit to an inflow lasting ∼100 a.
    Description: This research was funded by the DFG grants LA 1273/2-1, LA 1273/2, and WE 992/47-3. RCOM 0517.
    Keywords: Black Sea ; Ostracods ; Trace elements
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3Bremerhaven, PANGAEA
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-10-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Catunda, M. C. A., Bahr, A., Kaboth-Bahr, S., Zhang, X., Foukal, N. P., & Friedrich, O. Subsurface heat channel drove sea surface warming in the high-latitude North Atlantic during the Mid-Pleistocene Transition. Geophysical Research Letters, 48(11), (2021): e2020GL091899, https://doi.org/10.1029/2020GL091899.
    Description: The Mid-Pleistocene Transition (MPT, 1,200–600 ka) marks the rapid expansion of Northern Hemisphere (NH) continental ice sheets and stronger precession pacing of glacial/interglacial cyclicity. Here, we investigate the relationship between thermocline depth in the central North Atlantic, subsurface northward heat transport and the initiation of the 100-kyr cyclicity during the MPT. To reconstruct deep-thermocline temperatures, we generated a Mg/Ca-based temperature record of deep-dwelling (∼800 m) planktonic foraminifera from mid-latitude North Atlantic at Site U1313. This record shows phases of pronounced heat accumulation at subsurface levels during the mid-MPT glacial driven by increased outflow of the Mediterranean Sea. Concurrent warming of the subtropical thermocline and subpolar surface waters indicates enhanced (subsurface) inter-gyre transport of warm water to the subpolar North Atlantic, which provided moisture for ice-sheet growth. Precession-modulated variability in the northward transport of subtropical waters imprinted this orbital cyclicity into NH ice-sheets after Marine Isotope Stage 24.
    Description: Catunda and A. Bahr were funded by DFG project BA 3809/8, O.F. by DFG project FR 2544/11. S. Kaboth-Bahr acknowledges an Open-Topic Post-Doc Grant from the University of Potsdam. X.Z. was funded via the Lanzhou University (project 225000–830006) and National Science Foundation of China (Grant 42075047). N.F. was funded by the NSF Grant 1756361. Open access funding enabled and organized by Projekt DEAL.
    Keywords: Paleoceanography ; Mid-Pleistocene transition ; Subsurface heat transport ; Mediterranean outflow ; Inter-gyre connectivity ; North Atlantic gyres
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...