GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • macrophytes  (2)
  • Harmful algae  (1)
  • 1
    ISSN: 1573-5117
    Keywords: Rhode Island ; streams ; macrophytes ; macroalgae ; watershed ; drainage ; basin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The Wood River watershed, a small well-defined drainage basin in Rhode Island was monitored seasonally for all macrophytic vegetation and various physical variables. Twenty-four segments, 20 m in length were sampled. Mean stream depth, width and current velocity increased by 3 to 8 fold from 1st- to 4th-order segments. Light penetration was positively correlated with the above variables (p 〈 0.05) and increased by 11 fold from the headwaters to the mouth during September when the riparian canopy was maximum. 74 subgeneric taxa of macrophytes were collected in the Wood River basin, 36% algae, 13% bryophytes, 4% vascular cryptograms and 45% angiosperms. The highest diversity occurred in the 4th-order segments throughout the year. Species numbers were positively correlated with depth, width and light penetration (p 〈 0.05). Vascular plants dominated all orders, but their proportion doubled from 1st- to 4th-order streams. Macrophyte cover was twice as high in the 4th-order segments in June and September as in the other orders. Macrophyte abundance was positively correlated to light penetration and negatively correlated to the ratio of nonvascular: vascular plants (p 〈 0.05). Two distinct clusters were found for the predominant species. The first cluster contained mostly large angiosperms, which were rooted in sediments, while the second cluster was composed of small epilithic algae and bryophytes. The moss, Fontinalis antipyretica, was the most frequent species, occurring in 51% of the samples and in all 4 orders throughout the year.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5117
    Keywords: Benthic ; macroalgae ; macrophytes ; niche pre-emption ; riparian shading ; stream
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The seasonal distribution and abundance of benthic macrophytes were characterized from second- and third-order segments of a stream flowing over granite flatrock in the southeastern United States. Eighteen genera were identified over two annual cycles including macroalgae (60% of the total), angiosperms (30%), and bryophytes (10%). Light availability as affected by riparian shading was a major factor influencing community structure. Based on strong agreement among two-way indicator species analysis, detrended correspondence analysis and cluster analysis, we identified four communities characteristic of distinct light regimes and seasons. In shaded sites the red alga Lemanea australis was dominant during cool seasons, and the aquatic moss Fontinalis sp. was dominant during warm seasons. By contrast, in open sites L. australis and the angiosperm Podostemum ceratophyllum were co-dominant during cool seasons, and P. ceratophyllum was also dominant in warm seasons. The prolific macrophyte communities followed a pattern of broad seasonal maxima for dominant species along with rapid fluctuations in ephemerals. The community dynamics suggest that competitive interactions control space partitioning among macrophytes on the granite flatrock.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: Author Posting. © Elsevier B.V., 2008. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Marine Pollution Bulletin 56 (2008): 1049-1056, doi:10.1016/j.marpolbul.2008.03.010.
    Description: The proposed plan for enrichment of the Sulu Sea, Philippines, a region of rich marine biodiversity, with thousands of tonnes of urea in order to stimulate algal blooms and sequester carbon is flawed for multiple reasons. Urea is preferentially used as a nitrogen source by some cyanobacteria and dinoflagellates, many of which are neutrally or positively buoyant. Biological pumps to the deep sea are classically leaky, and the inefficient burial of new biomass makes the estimation of a net loss of carbon from the atmosphere questionable at best. The potential for growth of toxic dinoflagellates is also high, as many grow well on urea and some even increase their toxicity when grown on urea. Many toxic dinoflagellates form cysts which can settle to the sediment and germinate in subsequent years, forming new blooms even without further fertilization. If large-scale blooms do occur, it is likely that they will contribute to hypoxia in the bottom waters upon decomposition. Lastly, urea production requires fossil fuel usage, further limiting the potential for net carbon sequestration. The environmental and economic impacts are potentially great and need to be rigorously assessed.
    Description: This paper was developed under the Global Ecology and Oceanography of Harmful Algal Blooms (GEOHAB) core research project on HABs and Eutrophication and the GEOHAB regional focus on HABs in Asia. GEOHAB is supported by the International Oceanographic Commission (IOC) of UNESCO and by the Scientific Committee on Oceanic Research (SCOR), which are, in turn, supported by multiple agencies, including NSF and NOAA of the USA.
    Keywords: Urea dumping ; Ocean fertilization ; Carbon credits ; Sulu Sea ; Carbon sequestration ; Harmful algae ; Toxic dinoflagellates ; Cyanobacteria ; Hypoxia
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...