GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Electronic books.  (1)
  • Semiconductors II: surfaces, interfaces, microstructures, and related topics  (1)
  • 1
    Online-Ressource
    Online-Ressource
    Milton :Jenny Stanford Publishing,
    Schlagwort(e): Electronic books.
    Beschreibung / Inhaltsverzeichnis: This book focuses on the current state of the art of polymer-based capsules. It discusses the fundamental knowledge of the formations and formulations and the properties and performances of typical polymers capsules, together with their applications.
    Materialart: Online-Ressource
    Seiten: 1 online resource (419 pages)
    Ausgabe: 1st ed.
    ISBN: 9780429767883
    Sprache: Englisch
    Anmerkung: Cover -- Half Title -- Title Page -- Copyright Page -- Contents -- Preface -- 1. Redox-Responsive Nanocarriers: A Promising Drug Delivery Platform -- 1.1 Introduction -- 1.2 Redox-Responsive Polymeric Micelles -- 1.3 Redox-Responsive Liposomes -- 1.4 Redox-Responsive Polymersomes -- 1.5 Redox-Responsive Nanogels -- 1.6 Redox-Responsive Nanospheres -- 1.7 Redox-Responsive Nanocapsules -- 1.8 Conclusions -- 2. Smart Polymers-Functionalized Carbon Nanotubes Delivery Systems -- 2.1 Introduction -- 2.2 Polymers-Functionalized Carbon Nanotubes for Drugs Delivery -- 2.2.1 Paclitaxel -- 2.2.2 Doxorubicin -- 2.2.3 Platinum Metallodrugs -- 2.3 Polymers-Functionalized Carbon Nanotubes for Gene Delivery -- 2.4 Polymers-Functionalized Carbon Nanotubes for Protein Delivery -- 2.5 Summary and Future Perspectives -- 3. Smart Polymer Capsules -- 3.1 Introduction -- 3.2 Preparation -- 3.2.1 The Method of the Self-Assembly Approaches of Amphiphilic Block Copolymers -- 3.2.1.1 Film dispersion technique -- 3.2.1.2 Solvent-switching technique -- 3.2.1.3 Polymerization-induced self-assembly -- 3.2.2 Self-Assembly Approaches of Homopolymers -- 3.2.3 Self-Assembly Approaches of Hyperbranched Polymers -- 3.2.4 Self-Assembly Approaches of Graft Copolymers -- 3.2.5 Self-Assembly Approaches of Proteins -- 3.2.6 Dendrimers -- 3.2.7 Layer-by-Layer Assembly Approach -- 3.2.8 Surface/Interfacial Polymerization Approaches -- 3.2.8.1 NMRP techniques -- 3.2.8.2 ATRP techniques -- 3.2.8.3 RAFT techniques -- 3.2.8.4 Precipitation polymerization -- 3.2.8.5 Photopolymerization -- 3.2.9 Single-Step Adsorption Approaches -- 3.2.10 Polymerization and Self-Assembly Approaches in Nanodroplet -- 3.3 Application -- 3.3.1 Drug Delivery -- 3.3.1.1 Physical stimuli for drug delivery -- 3.3.1.2 Chemical stimuli for drug delivery -- 3.3.1.3 Biological stimuli for drug delivery. , 3.3.2 Gene Delivery -- 3.3.3 Biomimetic Microreactors -- 3.3.3.1 Enzyme catalysis -- 3.3.3.2 Polymerization -- 3.3.3.3 Nanoparticles synthesis -- 3.3.3.4 Artificial organelles -- 3.3.4 Sensing -- 3.4 Conclusion -- 4. On the Use of Complex Coacervates for Encapsulation -- 4.1 Introduction -- 4.2 Coacervation -- 4.2.1 Conditions for Complex Coacervation -- 4.2.1.1 Polyelectrolytes -- 4.2.1.2 Ions -- 4.2.1.3 Temperature -- 4.2.1.4 Foreign molecules -- 4.2.2 Properties of Complex Coacervate Phase -- 4.2.2.1 Response to changes in external conditions -- 4.2.2.2 Wetting -- 4.2.2.3 Rheological properties -- 4.3 Process of Encapsulation -- 4.3.1 Emulsification -- 4.3.2 Loading -- 4.3.3 Crosslinking -- 4.3.4 Separation and Further Processing -- 4.4 Application of Complex Coacervates for Encapsulation -- 4.5 Concluding Remarks -- 5. Improving Drug Biological Effects by Encapsulation into Polymeric Nanocapsules -- 5.1 Introduction -- 5.2 Nanostructures -- 5.2.1 Nanoemulsion -- 5.2.2 Nanospheres -- 5.2.3 Nanotubes -- 5.2.4 Nanogels -- 5.2.5 Dendrimers -- 5.2.6 Nanocapsules -- 5.3 Nanocapsule and Its Advantages over Other Nanostructures -- 5.3.1 Nanocapsules -- 5.3.1.1 Efficiency parameters of nanocapsules -- 5.3.1.2 Fabrication techniques -- 5.4 Benefits of Polymeric Nanocapsules -- 5.4.1 Increased Drug Stability Against Chemical- and Photodegradation -- 5.4.2 Increased Interaction with Cells and Tissues and Drug Targeting -- 5.4.2.1 High Specific Surface Area to Volume Ratio -- 5.4.2.2 Polymeric Shell -- 5.4.2.3 Surface Modifications -- 5.4.2.4 Representative Examples of Polymeric Nanocapsules with Enhanced Interaction with Cells and Tissues -- 5.5 Other Ways to Enhance Efficiency of Polymeric Nanocapsules -- 5.6 Evaluation Tests on Efficiency of Polymeric Nanocapsules -- 5.6.1 In Vitro Research Test of Polymeric Nanocapsules. , 5.6.1.1 Antioxidative Effects of Drugs -- 5.6.1.2 Anti-inflammatory Effects of Drugs -- 5.6.1.3 Anti-proliferative Effects of Drugs -- 5.6.1.4 Anti-microbial Effects -- 5.6.1.5 Photodynamic Therapy -- 5.6.2 In Vivo Research Test of Polymeric Nanocapsules -- 5.6.2.1 Anti-proliferative Effects of Drugs -- 5.6.2.2 Surface Active Targeting Effects of Drugs -- 5.6.2.3 Photodynamic Therapy -- 5.6.2.4 Medical Applications of Drug Delivery -- 5.6.2.5 Efficacy of Lipid-Core Nanocapsules -- 5.6.2.6 Polymeric Nanocapsules Efficiency -- 5.7 Safety Concerns Over Polymeric Nanocapsules -- 5.7.1 In Vitro Tests -- 5.7.2 In Vivo Tests -- 5.8 Conclusion -- 6. Drug and Protein Encapsulation by Emulsification: Technology Enhancement Using Foam Formulations -- 6.1 Introduction -- 6.1.1 Particle Parameters -- 6.2 Double Emulsification-Based Techniques -- 6.2.1 Water in Oil in Water Emulsification (W/O/W) -- 6.2.2 Water in Oil in Oil Emulsification (W/O/O) -- 6.2.3 Solid in Oil in Water (S/O/W) or Solid in Oil in Oil (S/O/O) Emulsification -- 6.3 Supercritical Carbon Dioxide-Based Techniques -- 6.3.1 Particles from Gas Saturated Solutions (PGSS) -- 6.3.2 Rapid Expansion from Saturated Solutions (RESS) -- 6.3.3 Supercritical Anti-solvent (SAS) -- 6.4 Conclusion -- 7. Drug Delivery Vehicles with Improved Encapsulation Efficiency: Taking Advantage of Specific Drug-Carrier Interactions -- 7.1 Introduction -- 7.1.1 Drug Delivery Mechanism -- 7.2 Commonly Used Anticancer Drug: Doxorubicin -- 7.3 Types of Carriers -- 7.3.1 Dendrimers -- 7.3.1.1 Properties of dendrimers -- 7.3.1.2 Dendrimer-drug interactions -- 7.3.2 Solid Lipid Nanoparticles -- 7.3.2.1 Factors affecting loading capacity (EE) of lipids -- 7.3.2.2 Specific SLN interaction with DOX -- 7.3.2.3 Doxorubicin-docosahexaenoic acid (DHA) interactions -- 7.3.2.4 Doxorubicin-alpha-tocopherol succinate (TS). , 7.3.3 Polymeric Micelles -- 7.3.3.1 Formation of micelle and encapsulation interactions -- 7.3.3.2 Enhancing EE via π-π stacking interactions -- 7.3.3.3 Hydrogen bonding interactions and crystallinity of PCL-DOX drug delivery systems -- 7.3.4 Liposomes -- 7.3.4.1 Effect of composition on EE of hydrophilic drugs -- 7.3.4.2 Effect of charge -- 7.4 Conclusion -- 8. Biodegradable Multilayer Capsules for Functional Foods Applications -- 8.1 Introduction -- 8.2 Polysaccharides-Based Polyelectrolyte Multilayers -- 8.3 Proteins or Poly(Amino Acid)s-Based Multilayers -- 8.4 Composite Multilayers -- 8.5 Conclusion -- 9. Essential Oils: From Extraction to Encapsulation -- 9.1 Introduction -- 9.1.1 Structure of Oil-Secreting Plants -- 9.1.2 Chemical Composition and Structure of Essential Oils -- 9.1.2.1 Terpenes -- 9.1.2.2 Terpenoids -- 9.1.3 Properties and Applications of Essential Oils -- 9.2 Extraction Methods -- 9.2.1 Hydrodistillation -- 9.2.1.1 Turbo-distillation -- 9.2.2 Organic Solvent Extraction -- 9.2.3 Cold Pressing -- 9.2.4 Innovations in Essential Oils Extraction -- 9.2.4.1 Supercriticalfluidextraction (SCFE) -- 9.2.4.2 Subcritical extraction liquids -- 9.2.4.3 Extraction with subcritical carbon dioxide -- 9.2.4.4 Ultrasound-assisted extraction (UAE) -- 9.2.4.5 Microwave-assisted extraction (MAE) -- 9.2.4.6 Solvent-free microwave extraction (SFME) -- 9.2.4.7 Microwave hydrodiffusion and gravity (MHG) -- 9.2.4.8 Microwave steam distillation (MSD) and microwave steam diffusion (MSDf) -- 9.3 Methods of Encapsulation -- 9.3.1 Encapsulation in Polymeric Particles -- 9.3.1.1 Nanoprecipitation -- 9.3.1.2 Coacervation -- 9.3.1.3 Spray drying -- 9.3.1.4 Rapid expansion of supercritical solutions (RESS) -- 9.3.2 Encapsulation in Liposomes -- 9.3.2.1 Thin film hydration -- 9.3.2.2 Reverse phase evaporation -- 9.3.2.3 Supercritical fluid technology. , 9.4 Encapsulation in Solid Lipid Nanoparticles -- 9.5 Conclusion -- 10. Semipermeable Polymeric Envelopes for Living Cells: Biomedical Applications -- 10.1 Introduction -- 10.2 Properties of Semipermeable Envelopes -- 10.2.1 Permeation Selectivity -- 10.2.2 Biocompatibility and Biostability -- 10.2.3 Mechanical Stability -- 10.3 Types of Semipermeable Envelopes -- 10.3.1 Macro-isolation Systems -- 10.3.1.1 Intravascular devices -- 10.3.1.2 Extravascular devices -- 10.3.2 Micro-isolation Systems -- 10.4 Fabrication Methods -- 10.4.1 Conformal Coating -- 10.4.2 Layer-by-Layer Technique -- 10.4.3 EMC Formation -- 10.4.4 Thermoreversible Gelation -- 10.4.5 Interfacial Polymerization -- 10.4.6 In Situ Polymerization -- 10.4.7 Interfacial Precipitation -- 10.4.8 Coacervation -- 10.4.9 Suspension Crosslinking -- 10.4.10 Coloidosomes -- 10.4.11 Incorporation of Porins -- 10.5 Polymers for Cell Encapsulation -- 10.6 Applications -- 10.6.1 Mammal Cells -- 10.6.1.1 Cell therapy -- 10.6.1.2 Cell transplantation -- 10.6.1.3 In vivo gene therapy by viral vectors -- 10.6.1.4 Stem cell therapy -- 10.6.1.5 Assisted reproduction technologies -- 10.6.1.6 Biosensors -- 10.6.1.7 Advanced tissue engineering -- 10.6.1.8 Minimizing of cell injuries upon cryopreservation -- 10.6.1.9 Other bioapplications -- 10.6.2 Bacteria -- 10.6.2.1 Probiotics -- 10.6.2.2 Bioreactor for delivery of therapeutic products -- 10.7 Conclusion -- 11. Bacteriophage Encapsulation: Trends and Potential Applications -- 11.1 Introduction -- 11.2 Motivations and Potential Applications -- 11.2.1 Food Preservation Technology -- 11.2.2 Healthcare -- 11.3 Biomaterials Involved in Encapsulation -- 11.3.1 Encapsulation Techniques -- 11.3.2 Emulsification -- 11.3.3 Extrusion -- 11.3.4 Spraydrying -- 11.3.5 Electrospun Nanofibers -- 11.4 Conclusion -- Index.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2017-05-18
    Beschreibung: Author(s): Yu Liu, Ye Yuan, Fang Liu, Roman Böttger, Wolfgang Anwand, Yutian Wang, Anna Semisalova, Alexey N. Ponomaryov, Xia Lu, Alpha T. N’Diaye, Elke Arenholz, Viton Heera, Wolfgang Skorupa, Manfred Helm, and Shengqiang Zhou Elucidating the interaction between magnetic moments and itinerant carriers is an important step to spintronic applications. Here, we investigate magnetic and transport properties in d 0 ferromagnetic SiC single crystals prepared by postimplantation pulsed laser annealing. Magnetic moments are contri… [Phys. Rev. B 95, 195309] Published Wed May 17, 2017
    Schlagwort(e): Semiconductors II: surfaces, interfaces, microstructures, and related topics
    Print ISSN: 1098-0121
    Digitale ISSN: 1095-3795
    Thema: Physik
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...