GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Milton :Jenny Stanford Publishing,
    Keywords: Electronic books.
    Description / Table of Contents: This book focuses on the current state of the art of polymer-based capsules. It discusses the fundamental knowledge of the formations and formulations and the properties and performances of typical polymers capsules, together with their applications.
    Type of Medium: Online Resource
    Pages: 1 online resource (419 pages)
    Edition: 1st ed.
    ISBN: 9780429767883
    Language: English
    Note: Cover -- Half Title -- Title Page -- Copyright Page -- Contents -- Preface -- 1. Redox-Responsive Nanocarriers: A Promising Drug Delivery Platform -- 1.1 Introduction -- 1.2 Redox-Responsive Polymeric Micelles -- 1.3 Redox-Responsive Liposomes -- 1.4 Redox-Responsive Polymersomes -- 1.5 Redox-Responsive Nanogels -- 1.6 Redox-Responsive Nanospheres -- 1.7 Redox-Responsive Nanocapsules -- 1.8 Conclusions -- 2. Smart Polymers-Functionalized Carbon Nanotubes Delivery Systems -- 2.1 Introduction -- 2.2 Polymers-Functionalized Carbon Nanotubes for Drugs Delivery -- 2.2.1 Paclitaxel -- 2.2.2 Doxorubicin -- 2.2.3 Platinum Metallodrugs -- 2.3 Polymers-Functionalized Carbon Nanotubes for Gene Delivery -- 2.4 Polymers-Functionalized Carbon Nanotubes for Protein Delivery -- 2.5 Summary and Future Perspectives -- 3. Smart Polymer Capsules -- 3.1 Introduction -- 3.2 Preparation -- 3.2.1 The Method of the Self-Assembly Approaches of Amphiphilic Block Copolymers -- 3.2.1.1 Film dispersion technique -- 3.2.1.2 Solvent-switching technique -- 3.2.1.3 Polymerization-induced self-assembly -- 3.2.2 Self-Assembly Approaches of Homopolymers -- 3.2.3 Self-Assembly Approaches of Hyperbranched Polymers -- 3.2.4 Self-Assembly Approaches of Graft Copolymers -- 3.2.5 Self-Assembly Approaches of Proteins -- 3.2.6 Dendrimers -- 3.2.7 Layer-by-Layer Assembly Approach -- 3.2.8 Surface/Interfacial Polymerization Approaches -- 3.2.8.1 NMRP techniques -- 3.2.8.2 ATRP techniques -- 3.2.8.3 RAFT techniques -- 3.2.8.4 Precipitation polymerization -- 3.2.8.5 Photopolymerization -- 3.2.9 Single-Step Adsorption Approaches -- 3.2.10 Polymerization and Self-Assembly Approaches in Nanodroplet -- 3.3 Application -- 3.3.1 Drug Delivery -- 3.3.1.1 Physical stimuli for drug delivery -- 3.3.1.2 Chemical stimuli for drug delivery -- 3.3.1.3 Biological stimuli for drug delivery. , 3.3.2 Gene Delivery -- 3.3.3 Biomimetic Microreactors -- 3.3.3.1 Enzyme catalysis -- 3.3.3.2 Polymerization -- 3.3.3.3 Nanoparticles synthesis -- 3.3.3.4 Artificial organelles -- 3.3.4 Sensing -- 3.4 Conclusion -- 4. On the Use of Complex Coacervates for Encapsulation -- 4.1 Introduction -- 4.2 Coacervation -- 4.2.1 Conditions for Complex Coacervation -- 4.2.1.1 Polyelectrolytes -- 4.2.1.2 Ions -- 4.2.1.3 Temperature -- 4.2.1.4 Foreign molecules -- 4.2.2 Properties of Complex Coacervate Phase -- 4.2.2.1 Response to changes in external conditions -- 4.2.2.2 Wetting -- 4.2.2.3 Rheological properties -- 4.3 Process of Encapsulation -- 4.3.1 Emulsification -- 4.3.2 Loading -- 4.3.3 Crosslinking -- 4.3.4 Separation and Further Processing -- 4.4 Application of Complex Coacervates for Encapsulation -- 4.5 Concluding Remarks -- 5. Improving Drug Biological Effects by Encapsulation into Polymeric Nanocapsules -- 5.1 Introduction -- 5.2 Nanostructures -- 5.2.1 Nanoemulsion -- 5.2.2 Nanospheres -- 5.2.3 Nanotubes -- 5.2.4 Nanogels -- 5.2.5 Dendrimers -- 5.2.6 Nanocapsules -- 5.3 Nanocapsule and Its Advantages over Other Nanostructures -- 5.3.1 Nanocapsules -- 5.3.1.1 Efficiency parameters of nanocapsules -- 5.3.1.2 Fabrication techniques -- 5.4 Benefits of Polymeric Nanocapsules -- 5.4.1 Increased Drug Stability Against Chemical- and Photodegradation -- 5.4.2 Increased Interaction with Cells and Tissues and Drug Targeting -- 5.4.2.1 High Specific Surface Area to Volume Ratio -- 5.4.2.2 Polymeric Shell -- 5.4.2.3 Surface Modifications -- 5.4.2.4 Representative Examples of Polymeric Nanocapsules with Enhanced Interaction with Cells and Tissues -- 5.5 Other Ways to Enhance Efficiency of Polymeric Nanocapsules -- 5.6 Evaluation Tests on Efficiency of Polymeric Nanocapsules -- 5.6.1 In Vitro Research Test of Polymeric Nanocapsules. , 5.6.1.1 Antioxidative Effects of Drugs -- 5.6.1.2 Anti-inflammatory Effects of Drugs -- 5.6.1.3 Anti-proliferative Effects of Drugs -- 5.6.1.4 Anti-microbial Effects -- 5.6.1.5 Photodynamic Therapy -- 5.6.2 In Vivo Research Test of Polymeric Nanocapsules -- 5.6.2.1 Anti-proliferative Effects of Drugs -- 5.6.2.2 Surface Active Targeting Effects of Drugs -- 5.6.2.3 Photodynamic Therapy -- 5.6.2.4 Medical Applications of Drug Delivery -- 5.6.2.5 Efficacy of Lipid-Core Nanocapsules -- 5.6.2.6 Polymeric Nanocapsules Efficiency -- 5.7 Safety Concerns Over Polymeric Nanocapsules -- 5.7.1 In Vitro Tests -- 5.7.2 In Vivo Tests -- 5.8 Conclusion -- 6. Drug and Protein Encapsulation by Emulsification: Technology Enhancement Using Foam Formulations -- 6.1 Introduction -- 6.1.1 Particle Parameters -- 6.2 Double Emulsification-Based Techniques -- 6.2.1 Water in Oil in Water Emulsification (W/O/W) -- 6.2.2 Water in Oil in Oil Emulsification (W/O/O) -- 6.2.3 Solid in Oil in Water (S/O/W) or Solid in Oil in Oil (S/O/O) Emulsification -- 6.3 Supercritical Carbon Dioxide-Based Techniques -- 6.3.1 Particles from Gas Saturated Solutions (PGSS) -- 6.3.2 Rapid Expansion from Saturated Solutions (RESS) -- 6.3.3 Supercritical Anti-solvent (SAS) -- 6.4 Conclusion -- 7. Drug Delivery Vehicles with Improved Encapsulation Efficiency: Taking Advantage of Specific Drug-Carrier Interactions -- 7.1 Introduction -- 7.1.1 Drug Delivery Mechanism -- 7.2 Commonly Used Anticancer Drug: Doxorubicin -- 7.3 Types of Carriers -- 7.3.1 Dendrimers -- 7.3.1.1 Properties of dendrimers -- 7.3.1.2 Dendrimer-drug interactions -- 7.3.2 Solid Lipid Nanoparticles -- 7.3.2.1 Factors affecting loading capacity (EE) of lipids -- 7.3.2.2 Specific SLN interaction with DOX -- 7.3.2.3 Doxorubicin-docosahexaenoic acid (DHA) interactions -- 7.3.2.4 Doxorubicin-alpha-tocopherol succinate (TS). , 7.3.3 Polymeric Micelles -- 7.3.3.1 Formation of micelle and encapsulation interactions -- 7.3.3.2 Enhancing EE via π-π stacking interactions -- 7.3.3.3 Hydrogen bonding interactions and crystallinity of PCL-DOX drug delivery systems -- 7.3.4 Liposomes -- 7.3.4.1 Effect of composition on EE of hydrophilic drugs -- 7.3.4.2 Effect of charge -- 7.4 Conclusion -- 8. Biodegradable Multilayer Capsules for Functional Foods Applications -- 8.1 Introduction -- 8.2 Polysaccharides-Based Polyelectrolyte Multilayers -- 8.3 Proteins or Poly(Amino Acid)s-Based Multilayers -- 8.4 Composite Multilayers -- 8.5 Conclusion -- 9. Essential Oils: From Extraction to Encapsulation -- 9.1 Introduction -- 9.1.1 Structure of Oil-Secreting Plants -- 9.1.2 Chemical Composition and Structure of Essential Oils -- 9.1.2.1 Terpenes -- 9.1.2.2 Terpenoids -- 9.1.3 Properties and Applications of Essential Oils -- 9.2 Extraction Methods -- 9.2.1 Hydrodistillation -- 9.2.1.1 Turbo-distillation -- 9.2.2 Organic Solvent Extraction -- 9.2.3 Cold Pressing -- 9.2.4 Innovations in Essential Oils Extraction -- 9.2.4.1 Supercriticalfluidextraction (SCFE) -- 9.2.4.2 Subcritical extraction liquids -- 9.2.4.3 Extraction with subcritical carbon dioxide -- 9.2.4.4 Ultrasound-assisted extraction (UAE) -- 9.2.4.5 Microwave-assisted extraction (MAE) -- 9.2.4.6 Solvent-free microwave extraction (SFME) -- 9.2.4.7 Microwave hydrodiffusion and gravity (MHG) -- 9.2.4.8 Microwave steam distillation (MSD) and microwave steam diffusion (MSDf) -- 9.3 Methods of Encapsulation -- 9.3.1 Encapsulation in Polymeric Particles -- 9.3.1.1 Nanoprecipitation -- 9.3.1.2 Coacervation -- 9.3.1.3 Spray drying -- 9.3.1.4 Rapid expansion of supercritical solutions (RESS) -- 9.3.2 Encapsulation in Liposomes -- 9.3.2.1 Thin film hydration -- 9.3.2.2 Reverse phase evaporation -- 9.3.2.3 Supercritical fluid technology. , 9.4 Encapsulation in Solid Lipid Nanoparticles -- 9.5 Conclusion -- 10. Semipermeable Polymeric Envelopes for Living Cells: Biomedical Applications -- 10.1 Introduction -- 10.2 Properties of Semipermeable Envelopes -- 10.2.1 Permeation Selectivity -- 10.2.2 Biocompatibility and Biostability -- 10.2.3 Mechanical Stability -- 10.3 Types of Semipermeable Envelopes -- 10.3.1 Macro-isolation Systems -- 10.3.1.1 Intravascular devices -- 10.3.1.2 Extravascular devices -- 10.3.2 Micro-isolation Systems -- 10.4 Fabrication Methods -- 10.4.1 Conformal Coating -- 10.4.2 Layer-by-Layer Technique -- 10.4.3 EMC Formation -- 10.4.4 Thermoreversible Gelation -- 10.4.5 Interfacial Polymerization -- 10.4.6 In Situ Polymerization -- 10.4.7 Interfacial Precipitation -- 10.4.8 Coacervation -- 10.4.9 Suspension Crosslinking -- 10.4.10 Coloidosomes -- 10.4.11 Incorporation of Porins -- 10.5 Polymers for Cell Encapsulation -- 10.6 Applications -- 10.6.1 Mammal Cells -- 10.6.1.1 Cell therapy -- 10.6.1.2 Cell transplantation -- 10.6.1.3 In vivo gene therapy by viral vectors -- 10.6.1.4 Stem cell therapy -- 10.6.1.5 Assisted reproduction technologies -- 10.6.1.6 Biosensors -- 10.6.1.7 Advanced tissue engineering -- 10.6.1.8 Minimizing of cell injuries upon cryopreservation -- 10.6.1.9 Other bioapplications -- 10.6.2 Bacteria -- 10.6.2.1 Probiotics -- 10.6.2.2 Bioreactor for delivery of therapeutic products -- 10.7 Conclusion -- 11. Bacteriophage Encapsulation: Trends and Potential Applications -- 11.1 Introduction -- 11.2 Motivations and Potential Applications -- 11.2.1 Food Preservation Technology -- 11.2.2 Healthcare -- 11.3 Biomaterials Involved in Encapsulation -- 11.3.1 Encapsulation Techniques -- 11.3.2 Emulsification -- 11.3.3 Extrusion -- 11.3.4 Spraydrying -- 11.3.5 Electrospun Nanofibers -- 11.4 Conclusion -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...