GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 551.46  (1)
  • Australia  (1)
Document type
Keywords
Language
Years
  • 1
    Publication Date: 2021-10-13
    Description: The Atlantic Subtropical Cells (STCs) are shallow wind-driven overturning circulations connecting the tropical upwelling areas to the subtropical subduction regions. In both hemispheres, they are characterized by equatorward transport at thermocline level, upwelling at the equator, and poleward Ekman transport in the surface layer. This study uses recent data from Argo floats complemented by ship sections at the western boundary as well as reanalysis products to estimate the meridional water mass transports and to investigate the vertical and horizontal structure of the STCs from an observational perspective. The seasonally varying depth of meridional velocity reversal is used as the interface between the surface poleward flow and the thermocline equatorward flow. The latter is bounded by the 26.0 kg m−3 isopycnal at depth. We find that the thermocline layer convergence is dominated by the southern hemisphere water mass transport (9.0 ± 1.1 Sv from the southern hemisphere compared to 2.9 ± 1.3 Sv from the northern hemisphere) and that this transport is mostly confined to the western boundary. Compared to the asymmetric convergence at thermocline level, the wind-driven Ekman divergence in the surface layer is more symmetric, being 20.4 ± 3.1 Sv between 10°N and 10°S. The net poleward transports (Ekman minus geostrophy) in the surface layer concur with values derived from reanalysis data (5.5 ± 0.8 Sv at 10°S and 6.4 ± 1.4 Sv at 10°N). A diapycnal transport of about 3 Sv across the 26.0 kg m−3 isopycnal is required in order to maintain the mass balance of the STC circulation.
    Keywords: 551.46 ; Atlantic Subtropical Cells ; wind-driven overturning circulations
    Language: English
    Type: map
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2021. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 34(5), (2021): 1767-1788, https://doi.org/10.1175/JCLI-D-19-1020.1.
    Description: Marine heatwaves along the coast of Western Australia, referred to as Ningaloo Niño, have had dramatic impacts on the ecosystem in the recent decade. A number of local and remote forcing mechanisms have been put forward; however, little is known about the depth structure of such temperature extremes. Utilizing an eddy-active global ocean general circulation model, Ningaloo Niño and the corresponding cold Ningaloo Niña events are investigated between 1958 and 2016, with a focus on their depth structure. The relative roles of buoyancy and wind forcing are inferred from sensitivity experiments. Composites reveal a strong symmetry between cold and warm events in their vertical structure and associated large-scale spatial patterns. Temperature anomalies are largest at the surface, where buoyancy forcing is dominant, and extend down to 300-m depth (or deeper), with wind forcing being the main driver. Large-scale subsurface anomalies arise from a vertical modulation of the thermocline, extending from the western Pacific into the tropical eastern Indian Ocean. The strongest Ningaloo Niños in 2000 and 2011 are unprecedented compound events, where long-lasting high temperatures are accompanied by extreme freshening, which emerges in association with La Niñas, that is more common and persistent during the negative phase of the interdecadal Pacific oscillation. It is shown that Ningaloo Niños during La Niña phases have a distinctively deeper reach and are associated with a strengthening of the Leeuwin Current, while events during El Niño are limited to the surface layer temperatures, likely driven by local atmosphere–ocean feedbacks, without a clear imprint on salinity and velocity.
    Description: The following support is gratefully acknowledged: the Feodor-Lynen Fellowship by the Alexander von Humboldt Foundation and the WHOI Postdoctoral Scholar program (to SR), the Office of Naval Research under project number N-00014-19-12646 (to GG), the James E. and Barbara V. Moltz Fellowship for Climate-Related Research (to CCU), and IndoArchipel from the Deutsche Forschungsgemeinschaft (DFG) as part of the Special Priority Program (SPP)-1889 “Regional Sea Level Change and Society” (SeaLevel) (for PW).
    Keywords: Ocean ; Australia ; Indian Ocean ; Extreme events ; General circulation models ; Ocean models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...