GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    facet.materialart.
    Unbekannt
    In:  [Talk] In: SOLAS Open Science Conference 2019, 21.-25.04.2019, Sapporo, Japan .
    Publikationsdatum: 2019-12-03
    Beschreibung: Large volumes of seawater are used in different industrial sectors such as power plants and ships. Chemical disinfection of this seawater prevents bio-fouling, but also produces halogenated disinfection by-products (DBPs). One major DBP is bromoform whose anthropogenic input to the environment is highly uncertain. Halocarbons such as bromoform impact the oxidation of trace gases and ozone chemistry in the atmosphere. We quantify the contribution of DBPs from industrial waste water to oceanic halocarbon concentrations and their impact on atmospheric chemistry. Based on industrial water discharge and DBP estimates, we simulate oceanic pathways of halocarbons along NEMO-ORCA12 driven Lagrangian trajectories. Anthropogenic halocarbon concentration are strongly enhanced along the coasts in Southeast Asia, but also allow for transport into the open ocean. We highlight bromoform showing that its anthropogenic sources can explain much of observed shelf water concentrations. We show how anthropogenic marine bromine impacts tropospheric and stratospheric ozone chemistry compared to natural background emissions.
    Materialart: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2013-11-13
    Beschreibung: [1]  In this paper, observations by TIMED/SABER from 2002 to 2012 and by Envisat/MIPAS from 2008 to 2009 are used to study the longitudinal structure of temperature in the lower thermosphere. In order to remove the longitudinal structure induced by tides, diurnally averaged SABER temperatures are used. For MIPAS data, we use averaged temperatures between day and night. The satellite observations show that there are strong longitudinal variations in temperature in the high-latitude lower thermosphere that persists over all seasons. The peak of the diurnally averaged temperature in the lower thermosphere always occurs around the auroral zone. A clear asymmetry between the two hemispheres in the longitudinal temperature structure is observed, being more pronounced in the Southern than in the Northern Hemisphere. In both hemispheres, the longitudinal variation is dominated by the first harmonic in longitude. The total radiative cooling observed by SABER has a structure in longitude that is similar to that of temperature. Modeling simulations using the TIEGCM reproduce similar features of the longitudinal variations of temperature in the lower thermosphere. Comparison of two model runs with and without auroral heating confirms that auroral heating causes the observed longitudinal variations. The multi-year averaged vertical structures of temperature observed by the two satellite instruments indicate that the impact of auroral heating on the thermodynamics of the neutral atmosphere can penetrate down to about 105 km.
    Print ISSN: 0148-0227
    Thema: Geologie und Paläontologie , Physik
    Publiziert von Wiley-Blackwell im Namen von American Geophysical Union (AGU).
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2023-02-08
    Beschreibung: The quasi‐biennial oscillation (QBO) of the equatorial zonal wind leads to zonally symmetric temperature variations in the stratosphere that descend downward. Here we investigate the QBO‐induced temperature anomalies in the tropical tropopause layer (TTL) and detect pronounced longitudinal variations of the signal. In addition, the QBO temperature anomalies show a strong seasonal variability. The magnitude of these seasonal and longitudinal QBO variations is comparable to the magnitude of the well‐known zonal mean QBO signal in the TTL. At the cold point tropopause, the strongest QBO variations of around ±1.6 K are found over regions of active convection such as the West Pacific and Africa during boreal winter. The weakest QBO variations of ±0.25 K are detected over the East Pacific during boreal summer, while the zonal mean signal ranges around ±0.7 K. The longitudinal variations are associated with enhanced convective activity that occurs during QBO cold phases and locally enhances the cold anomalies.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2022-04-06
    Beschreibung: It is an open question how localized elevated emissions of bromoform (CHBr3) and other very short-lived halocarbons (VSLHs), found in coastal and upwelling regions, and low background emissions, typically found over the open ocean, impact the atmospheric VSLH distribution. In this study, we use the Lagrangian dispersion model FLEXPART to simulate atmospheric CHBr3 resulting from assumed uniform background emissions, and from elevated emissions consistent with those derived during three tropical cruise campaigns. The simulations demonstrate that the atmospheric CHBr3 distributions in the uniform background emissions scenario are highly variable with high mixing ratios appearing in regions of convergence or low wind speed. This relation holds on regional and global scales. The impact of localized elevated emissions on the atmospheric CHBr3 distribution varies significantly from campaign to campaign. The estimated impact depends on the strength of the emissions and the meteorological conditions. In the open waters of the western Pacific and Indian oceans, localized elevated emissions only slightly increase the background concentrations of atmospheric CHBr3, even when 1∘ wide source regions along the cruise tracks are assumed. Near the coast, elevated emissions, including hot spots up to 100 times larger than the uniform background emissions, can be strong enough to be distinguished from the atmospheric background. However, it is not necessarily the highest hot spot emission that produces the largest enhancement, since the tug-of-war between fast advective transport and local accumulation at the time of emission is also important. Our results demonstrate that transport variations in the atmosphere itself are sufficient to produce highly variable VSLH distributions, and elevated VSLHs in the atmosphere do not always reflect a strong localized source. Localized elevated emissions can be obliterated by the highly variable atmospheric background, even if they are orders of magnitude larger than the average open ocean emissions.
    Materialart: Article , PeerReviewed
    Format: text
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2023-12-18
    Beschreibung: Bromoform (CHBr3), a recognized contributor to stratospheric ozone depletion, has been largely exempt from the Montreal Protocol's regulation due to its short atmospheric lifetime and large natural emissions. Using our recent CHBr3 emission inventory containing both natural and anthropogenic sources, we reevaluated the role played by the latter in the total CHBr3 flux into the Northern Hemisphere extratropical stratosphere. Derived mainly from ship ballast, power plant cooling and desalination plant brine water, these anthropogenic sources suggest a substantial underestimation in previous global CHBr3 emission estimates. Anthropogenic sources have been underestimated by 31.5% globally, and more alarmingly, this underestimation escalates to 70.5% when focusing on the Northern Hemisphere. Consequently, atmospheric CHBr3 concentrations are also significantly higher than previous estimates, especially over the NH extratropics during boreal winter. The ODP-weighted emissions in the NH based on historical ECMWF meteorology are ~28.2 Gg Br/year, increased by ~78% above previous estimates, suggesting a more significant contribution of anthropogenic CHBr3 to stratospheric ozone depletion, especially in the NH lowermost stratosphere. To study the potential impact of these revised emission inventories, we employ the Whole Atmosphere Community Climate Model (WACCM), which enables us to project the future ozone depletion from CHBr3 under climate change scenarios and evaluate the necessity for regulatory measures to manage anthropogenic sources.
    Materialart: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2024-02-07
    Beschreibung: To mitigate the rumen enteric methane (CH4) produced by ruminant livestock, Asparagopsis taxiformis is proposed as an additive to ruminant feed. During the cultivation of Asparagopsis taxiformis in the sea or in terrestrially based systems, this macroalgae, like most seaweeds and phytoplankton, produces a large amount of bromoform (CHBr3), which contributes to ozone depletion once released into the atmosphere. In this study, we focus on the impact of CHBr3 on the stratospheric ozone layer resulting from potential emissions from proposed Asparagopsis cultivation in Australia. The impact is assessed by weighting the emissions of CHBr3 with its ozone depletion potential (ODP), which is traditionally defined for long-lived halocarbons but has also been applied to very short-lived substances (VSLSs). An annual yield of ∼3.5 × 104 Mg dry weight is required to meet the needs of 50 % of the beef feedlot and dairy cattle in Australia. Our study shows that the intensity and impact of CHBr3 emissions vary, depending on location and cultivation scenarios. Of the proposed locations, tropical farms near the Darwin region are associated with the largest CHBr3 ODP values. However, farming of Asparagopsis using either ocean or terrestrial cultivation systems at any of the proposed locations does not have the potential to significantly impact the ozone layer. Even if all Asparagopsis farming were performed in Darwin, the CHBr3 emitted into the atmosphere would amount to less than 0.02 % of the global ODP-weighted emissions. The impact of remaining farming scenarios is also relatively small even if the intended annual yield in Darwin is scaled by a factor of 30 to meet the global requirements, which will increase the global ODP-weighted emissions up to ∼0.5 %.
    Materialart: Article , PeerReviewed
    Format: text
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2024-02-07
    Beschreibung: The Indian Ocean is coupled to atmospheric dynamics and chemical composition via several unique mechanisms, such as the seasonally varying monsoon circulation. During the winter monsoon season, high pollution levels are regularly observed over the entire northern Indian Ocean, while during the summer monsoon, clean air dominates the atmospheric composition, leading to distinct chemical regimes. The changing atmospheric composition over the Indian Ocean can interact with oceanic biogeochemical cycles and impact marine ecosystems, resulting in potential climate feedbacks. Here, we review current progress in detecting and understanding atmospheric gas-phase composition over the Indian Ocean and its local and global impacts. The review considers results from recent Indian Ocean ship campaigns, satellite measurements, station data, and information on continental and oceanic trace gas emissions. The distribution of all major pollutants and greenhouse gases shows pronounced differences between the landmass source regions and the Indian Ocean, with strong gradients over the coastal areas. Surface pollution and ozone are highest during the winter monsoon over the Bay of Bengal and the Arabian Sea coastal waters due to air mass advection from the Indo-Gangetic Plain and continental outflow from Southeast Asia. We observe, however, that unusual types of wind patterns can lead to pronounced deviations of the typical trace gas distributions. For example, the ozone distribution maxima shift to different regions under wind scenarios that differ from the regular seasonal transport patterns. The distribution of greenhouse gases over the Indian Ocean shows many similarities when compared to the pollution fields, but also some differences of the latitudinal and seasonal variations resulting from their long lifetimes and biogenic sources. Mixing ratios of greenhouse gases such as methane show positive trends over the Indian Ocean, but long-term changes in pollution and ozone due to changing emissions and transport patterns require further investigation. Although we know that changing atmospheric composition and perturbations within the Indian Ocean affect each other, the impacts of atmospheric pollution on oceanic biogeochemistry and trace gas cycling are severely understudied. We highlight potential mechanisms, future research topics, and observational requirements that need to be explored in order to fully understand such interactions and feedbacks in the Indian Ocean region.
    Materialart: Article , PeerReviewed
    Format: text
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2024-02-07
    Beschreibung: Bromoform is the major by-product from chlorination of cooling water in coastal power plants. The number of power plants in East and Southeast Asian economies has increased rapidly, exceeding mean global growth. Bottom-up estimates of bromoform emissions based on few measurements appear to under-represent the industrial sources of bromoform from East Asia. Using oceanic Lagrangian analyses, we assess the amount of bromoform produced from power plant cooling-water treatment in East and Southeast Asia. The spread of bromoform is simulated as passive particles that are advected using the three-dimensional velocity fields over the years 2005/2006 from the high-resolution NEMO-ORCA0083 ocean general circulation model. Simulations are run for three scenarios with varying initial bromoform concentrations based on the range of bromoform measurements in cooling-water discharge. Comparing the modelled anthropogenic bromoform to in situ observations in the surface ocean and atmosphere, the two lower scenarios show the best agreement, suggesting initial bromoform concentrations in cooling water to be around 20–60 µg L−1. Based on these two scenarios, the model produces elevated bromoform in coastal waters of East Asia with average concentrations of 23 and 68 pmol L−1 and maximum values in the Yellow Sea, Sea of Japan and East China Sea. The industrially produced bromoform is quickly emitted into the atmosphere with average air–sea flux of 3.1 and 9.1 nmolm−2h−1 , respectively. Atmospheric abundances of anthropogenic bromoform are derived from simulations with the Lagrangian particle dispersion model FLEXPART based on ERA-Interim wind fields in 2016. In the marine boundary layer of East Asia, the FLEXPART simulations show mean anthropogenic bromoform mixing ratios of 0.4–1.3 ppt, which are 2–6 times larger compared to the climatological bromoform estimate. During boreal winter, the simulations show that some part of the anthropogenic bromoform is transported by the northeasterly winter monsoon towards the tropical regions, whereas during boreal summer anthropogenic bromoform is confined to the Northern Hemisphere subtropics. Convective events in the tropics entrain an additional 0.04–0.05 ppt of anthropogenic bromoform into the stratosphere, averaged over tropical Southeast Asia. In our simulations, only about 10 % of anthropogenic bromoform is outgassed from power plants located in the tropics south of 20∘ N, so that only a small fraction of the anthropogenic bromoform reaches the stratosphere. We conclude that bromoform from cooling-water treatment in East Asia is a significant source of atmospheric bromine and might be responsible for annual emissions of 100–300 Mmol of Br in this region. These anthropogenic bromoform sources from industrial water treatment might be a missing factor in global flux estimates of organic bromine. While the current emissions of industrial bromoform provide a significant contribution to regional tropospheric budgets, they provide only a minor contribution to the stratospheric bromine budget of 0.24–0.30 ppt of Br.
    Materialart: Article , PeerReviewed
    Format: text
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2024-02-07
    Beschreibung: Key Points: - A new CHBr3 emission inventory based on natural and anthropogenic sources suggests that the latter account for 12%–28% of the global emissions - In the NH, new anthropogenic estimates increase known natural CHBr3 emissions by up to 70.5%, leading to higher atmospheric CHBr3 levels - At the NH extratropical tropopause, CHBr3 is enhanced by 0.9 ppt Br due to anthropogenic sources thus doubling natural CHBr3 abundances Bromoform (CHBr3) contributes to stratospheric ozone depletion but is not regulated under the Montreal Protocol due to its short lifetime and large natural sources. Here, we show that anthropogenic sources contribute significantly to the amount of CHBr3 transported into the Northern Hemisphere (NH) extratropical stratosphere. We present a new CHBr3 emission inventory comprised of natural and anthropogenic sources, with the latter estimated from ship ballast, power plant cooling and desalination plant brine water. Including anthropogenic sources in the new inventory increases CHBr3 emissions by up to 31.5% globally and 70.5% in the NH. In consequence, atmospheric CHBr3 is also significantly higher, especially over the NH extratropics during boreal winter. Here anthropogenic sources enhance bromine at the tropopause by 0.9 ppt Br, thus doubling natural CHBr3 abundances. For some latitudes, tropopause bromine increases by 2.4 ppt Br suggesting significant contributions of anthropogenic CHBr3 to the NH lowermost stratosphere.
    Materialart: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2016-06-07
    Beschreibung: A (6, 14)-connected metal-organic framework (MOF), namely [Co 9 (μ 3 -OH) 2 (CPT) 10 (HCOO) 6 ] n ( 1 ) [HCPT = 4-(4-carboxyphenyl)-1, 2,4-triazole], was synthesized using custom-designed bifunctional triazolate-carboxylate organic linkers and Co II salts. The framework exhibits two types of highly connected Co3 and Co6 cluster moieties with distinct arrangement, which were generated in situ . The combination of these building units results in an unusual (6, 14)-connected structure, which has been rarely observed in MOF chemistry. This MOF was characterized by single X-ray diffraction, PXRD, and TGA. Furthermore, its magnetic properties were investigated.
    Print ISSN: 0044-2313
    Digitale ISSN: 1521-3749
    Thema: Chemie und Pharmazie
    Publiziert von Wiley-Blackwell
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...