GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-5117
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract During two cruises to the Baltic (Mecklenburg Bight) in September 1993 and November 1994 bottom water and sediment samples were taken from 5 stations on a 2.0 km long transect above a benthic sandy silt community. Profiles of total particulate matter, particulate organic carbon, chlorophyll equivalents and urea were taken in the benthic boundary layer (5–40 cm height above sea floor) on the downstream stations across an area occupied by macrofauna feeding at the sediment-water interface at 26 m water depth. Particulate matter concentration profiles varied under the two different flow conditions in September ( u* = 0.7 cm s-1) and November (u* = 0.2 cm s-1). In September 1993 resuspension of total particulate matter (TPM) of 22 to 130 mg m-2 h-1 occurred while particulate organic carbon (POC) and chlorophyll (CPE) were deposited with a rate of 9 mg m-2 h-1 and 0.11 mg m-2 h-1 respectively at the station of highest macrofauna abundance. In November 1994 physical sedimentation and biological deposition of up to 388 mg m-2 h-1 TPM, 7.4 mg m-2 h-1 POC and 0.07 mg m-2 h-1 CPE occurred. Urea was released into the water column. Data suggest that in shallow water environments local sediment and benthic boundary layer characteristics prevent large scale calculations of fluxes of particulate matter.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Hydrobiologia 375-376 (1998), S. 265-285 
    ISSN: 1573-5117
    Keywords: Macrobenthos ; community structure ; continental slope ; flow velocity ; C/N ; NE Atlantic
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Macrofauna density, biomass and community structure together with several characteristics of the sediment and flow velocity were estimated in May 1994 and August 1995 at seven stations ranging from 208 m to 4470 m water depth along the OMEX-transect in the Goban Spur area (NE Atlantic). In 1994 four additional stations were sampled at a parallel transect about 40 km SSE of the OMEX-transect. In 1995 two additional transects were sampled, one in the Porcupine Seabight ∼ 100 km NNW and one along the slope at ∼ 3500 m water depth situated ∼ 200 km SSE of the OMEX-transect. An overall trend in decrease in density and biomass with increasing water depth was found, but no depth related pattern in mean individual weight could be observed. Mean individual weight, however, did show a negative relationship with flow velocities. Correspondence-analyses and single linkage clustering of the community structure showed three more or less depth related clusters, representing a shelf community, an upper-slope and a lower-slope community. These clusters coincided with differences in grain-size, % organic C and total N within the sediment and differences in flow velocities. However, some of the stations at similar depths were not clustered together. Grain-size did not differ at stations with similar depth, but the % of C and N and flow velocities could differ markedly. Stations at similar depth, but with different physical and/or chemical conditions showed differences in density, biomass, mean individual weight and in macrobenthic community structure. More filter-feeding taxa were observed at stations with higher flow velocities, whereas more subsurface deposit-feeders were found at stations with higher sedimentation rates. Thus, besides the effects of water depth on macrobenthic community structure, other physical and chemical factors (such as flow velocities and organic matter supply) can be important structuring factors as well.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Springer
    In:  In: Faszination Meeresforschung : ein ökologisches Lesebuch. , ed. by Hempel, G., Bischof, K. and Hagen, W. Springer, Heidelberg, Germany, pp. 179-210. 2. Aufl. ISBN 978-3-662-49713-5
    Publication Date: 2020-04-03
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-03-18
    Description: Interest in deep-sea mining for polymetallic nodules as an alternative source to onshore mines for various high-technology metals has risen in recent years, as demands and costs have increased. The need for studies to assess its short- and long-term consequences on polymetallic nodule ecosystems is therefore also increasingly prescient. Recent image-based expedition studies have described the temporal impacts on epi-/megafauna seafloor communities across these ecosystems at particular points in time. However, these studies have failed to capture information on large infauna within the sediments or give information on potential transient and temporally limited users of these areas, such as mobile surface deposit feeders or fauna responding to bloom events or food fall depositions. This study uses data from the Peru Basin polymetallic nodule province, where the seafloor was previously disturbed with a plough harrow in 1989 and with an epibenthic sled (EBS) in 2015, to simulate two contrasting possible impact forms of mining disturbance. To try and address the shortfall on information on transient epifauna and infauna use of these various disturbed and undisturbed areas of nodule-rich seafloor, images collected 6 months after the 2015 disturbance event were inspected and all Lebensspuren, 'traces of life', were characterized by type (epi- or infauna tracemakers, as well as forming fauna species where possible), along with whether they occurred on undisturbed seafloor or regions disturbed in 1989 or 2015. The results show that epi- and endobenthic Lebensspuren were at least 50% less abundant across both the ploughed and EBS disturbed seafloors. This indicates that even 26 years after disturbance, sediment use by fauna may remain depressed across these areas.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-10-23
    Description: Knowledge on basic biological functions of organisms is essential to understand not only the role they play in the ecosystems but also to manage and protect their populations. The study of biological processes, such as growth, reproduction and physiology, which can be approached in situ or by collecting specimens and rearing them in aquaria, is particularly challenging for deep-sea organisms like cold-water corals. Field experimental work and monitoring of deep-sea populations is still a chimera. Only a handful of research institutes or companies has been able to install in situ marine observatories in the Mediterranean Sea or elsewhere, which facilitate a continuous monitoring of deep-sea ecosystems. Hence, today’s best way to obtain basic biological information on these organisms is (1) working with collected samples and analysing them post-mortem and / or (2) cultivating corals in aquaria in order to monitor biological processes and investigate coral behaviour and physiological responses under different experimental treatments. The first challenging aspect is the collection process, which implies the use of oceanographic research vessels in most occasions since these organisms inhabit areas between ca. 150 m to more than 1000 m depth, and specific sampling gears. The next challenge is the maintenance of the animals on board (in situations where cruises may take weeks) and their transport to home laboratories. Maintenance in the home laboratories is also extremely challenging since special conditions and set-ups are needed to conduct experimental studies to obtain information on the biological processes of these animals. The complexity of the natural environment from which the corals were collected cannot be exactly replicated within the laboratory setting; a fact which has led some researchers to question the validity of work and conclusions drawn from such undertakings. It is evident that aquaria experiments cannot perfectly reflect the real environmental and trophic conditions where these organisms occur, but: (1) in most cases we do not have the possibility to obtain equivalent in situ information and (2) even with limitations, they produce relevant information about the biological limits of the species, which is especially valuable when considering potential future climate change scenarios. This chapter includes many contributions from different authors and is envisioned as both to be a practical “handbook” for conducting cold-water coral aquaria work, whilst at the same time offering an overview on the cold-water coral research conducted in Mediterranean laboratories equipped with aquaria infrastructure. Experiences from Atlantic and Pacific laboratories with extensive experience with cold-water coral work have also contributed to this chapter, as their procedures are valuable to any researcher interested in conducting experimental work with cold-water corals in aquaria. It was impossible to include contributions from all laboratories in the world currently working experimentally with cold-water corals in the laboratory, but at the conclusion of the chapter we attempt, to our best of our knowledge, to supply a list of several laboratories with operational cold-water coral aquaria facilities.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Inbook , peerRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...