We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content
Log in

An in situ experiment to investigate the modification of particulate matter and urea above a benthic sandy silt community in the Baltic Sea

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

During two cruises to the Baltic (Mecklenburg Bight) in September 1993 and November 1994 bottom water and sediment samples were taken from 5 stations on a 2.0 km long transect above a benthic sandy silt community. Profiles of total particulate matter, particulate organic carbon, chlorophyll equivalents and urea were taken in the benthic boundary layer (5–40 cm height above sea floor) on the downstream stations across an area occupied by macrofauna feeding at the sediment-water interface at 26 m water depth. Particulate matter concentration profiles varied under the two different flow conditions in September ( u* = 0.7 cm s-1) and November (u* = 0.2 cm s-1). In September 1993 resuspension of total particulate matter (TPM) of 22 to 130 mg m-2 h-1 occurred while particulate organic carbon (POC) and chlorophyll (CPE) were deposited with a rate of 9 mg m-2 h-1 and 0.11 mg m-2 h-1 respectively at the station of highest macrofauna abundance. In November 1994 physical sedimentation and biological deposition of up to 388 mg m-2 h-1 TPM, 7.4 mg m-2 h-1 POC and 0.07 mg m-2 h-1 CPE occurred. Urea was released into the water column. Data suggest that in shallow water environments local sediment and benthic boundary layer characteristics prevent large scale calculations of fluxes of particulate matter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, J. R. L., 1971. A theoretical and experimental study of climbing-ripple cross lamination, with a field application to the Uppsoka esker. Geogr. Ann. 53A: 157–187.

    Article  Google Scholar 

  • Aller, R. & J. Yingst, 1985. Effects of the marine deposit-feeders Herteromastus filiformisPolychaeta, Macoma baltica Bivalvia and Tellina texana Bivalvia on averaged sedimentary solute transport, reaction times and microbial distributions. J. Mar. Res. 433: 615–645.

    Google Scholar 

  • Asmus, R. M. & H. Asmus, 1991. Mussel beds: limiting or promoting phytoplankton J. exp. mar. Biol. Ecol. 148: 215–232.

    Article  Google Scholar 

  • Barnett, P. R. O., J. Watson & D. Conelly, 1984. A multiple corer for taking virtually undisturbed samples from, shelf, bathyal and abyssal sediments. Oceanol. Acta 7: 339–409.

    Google Scholar 

  • Bender, K. & W. R. Davis, 1984. The Effect of Feeding by Yoldia Limatula on Bioturbation. Ophelia 23: 91–100.

    Google Scholar 

  • Bock M. & D. C. Miller, 1995. Storm effects on particulate food resources on an intertidal sandflat. J. exp. mar. Biol. Ecol. 187: 81–101.

    Article  Google Scholar 

  • Bodungen, B. V., M. Wunsch & H. Fürderer, 1991. Sampling and analysis of suspended and sinking particles in the North Atlantic. Geophys. Monogr. 63: 47–56.

    Google Scholar 

  • Dame, R. F., J. D. Spurrier & T. G. olaver, 1989. Carbon, nitrogen and phosphorus processing by an oyster reef. Mar. Ecol. Prog. Ser. 54: 249–256.

    Google Scholar 

  • Davis, W. R., 1993. The role of bioturbation in sediment resuspension and its interaction with physical shearing. J. exp. mar. Biol. Ecol. 171: 187–200.

    Article  Google Scholar 

  • Eckman, J. E. & A. R. M. Nowell, 1984. Boundary skin friction and sediment transport about an animal tube mimic. Sedimentology 31: 851–862.

    Article  Google Scholar 

  • Edler, L., 1979. Recommendation methods for marine biological studies in the Baltic Sea-Phytoplankton and Chlorophyll. BMB Publications 5: 25–31.

    Google Scholar 

  • Fauchald, K. & P. A. Jumars, 1979. The diet of worms: A study of polychaete feeding guilts. Oceanogr. Mar. Biol. Ann. Rev. 17: 193–284.

    Google Scholar 

  • Fennel, W. & M. Sturm, 1992. Dynamics of the western Baltic. J. Mar. Syst. 3: 183–205.

    Article  Google Scholar 

  • Flach, E. & L. Thomsen, 1998. Do physical and chemical factors structure the macrobenthic community at a continental slope in the NE Atlantic. Hydrobiologia 375/376: 265–285.

    Article  Google Scholar 

  • Gosselck, F., F. Doerschel & T. Doerschel, 1987. Further developments of macrozoobenthos in Lübeck Bay, followimg recolonisation in 1980/81. Int. Rev. Ges. Hydrobiol. 725: 631–638.

    Google Scholar 

  • Graf, G. & R. Rosenberg, 1997. Bioresuspension and Biodeposition - A Review. J. Mar. Systems 11: 269–278.

    Article  Google Scholar 

  • Grant, J., 1983. The relative magnitude of biological and physical sediment reworking in an intertidal community. J. Mar. Res. 41: 673–689.

    Article  Google Scholar 

  • Grasshoff, K., K. Ehrhard & K. Kremling, 1976. Methods of seawater analysis. Verlag Chemie, Weinh. 317 pp.

  • Gust, G. & G. L. Weatherly, 1985. Velocities, turbulence and skin friction in a deep-sea logarithmic layer. J. Geophys. Res. 90: 4779–4792.

    Google Scholar 

  • Hily, C., 1991. Is the activity of benthic suspension feeders a factor controlling water quality in the Bay of Brest? Mar. Ecol. Prog. Ser. 69: 179–188.

    Google Scholar 

  • Jähmlich, S., 1996. Untersuchungen zur Partikeldynamik in der Bodengrenzschicht der Mecklenburger Bucht, GEOMAR Reports, Universität Kiel. 85 pp.

  • Jumars, P. A. & A. R. M. Nowell, 1984. Effects of benthos on sediment transport: difficulties with functional grouping. Cont. Shelf Res. 3: 115–130.

    Article  Google Scholar 

  • Jumars, P. A., 1993. Concepts in biological oceanography, Oxford University Press. 348 pp. LaBarbera, M., 1984. Feeding currents and particle capture mechanisms in suspension feeding animals. Am. Zool. 24: 71–84.

  • Levinton, J. S., 1991. Variable feeding behaviour in three species of Macoma as a response to water flow and sediment transport. Mar. Biol. 110: 375–383.

    Article  Google Scholar 

  • Loo, L.-O. & R. Rosenberg, 1989. Bivalve suspension feeding dynamics and benthic-pelagic coupling in an eutrophicated marine bay. J. exp. mar. Biol. Ecol. 130: 253–276.

    Article  Google Scholar 

  • Mann, K. & J. Lazier, 1991. Dynamics of marine ecosystems. Blackwell Scientific Publications. 306 pp.

  • Michaelis, H., 1978. Zur Morphologie und Ökologie von Polydora cilliata und P. Ligni Polychaete, Spionodae. Helg. Wiss. Unters. 31: 102–116.

  • Middleton, G. V. & J. B. Southard, 1984. Mechanics of sediment movement. S.E.P.M. Short course Number 3, 2nd Edition, Tulsa, USA.

  • Miller, D. C., P. A. Jumars & A. R. M. Nowell, 1984. Effects of sediment transport on deposit feeding: scaling arguments. Limn. Oceanogr. 29: 1202–1217.

    Article  Google Scholar 

  • Miller, D. C. & P. A. Jumars, 1986. Pellet accumulation sediment supply and crowding as determinants of surface deposit-feeding rate in Pseudopolydora kempi japonica. J. exp. mar. Biol. Ecol. 99: 1–17.

    Article  Google Scholar 

  • Miller, D. C. & R. W. Sternberg, 1988. Field measurements of the fluid and sediment-dynamic environment of a benthic deposit feeder. J. Mar. Res. 46: 771–796.

    Article  Google Scholar 

  • Miller, D. C., M. J. Bock & E. J. Turner, 1992. Deposit and suspension feeding in oscillary flows and sediment fluxes. J. Mar. Res. 50: 489–520.

    Google Scholar 

  • Muschenheim, D. K. & C. R. Newell, 1992. Utilization of seston over a mussel bed. Mar. Ecol. Prog. Ser. 85: 131–136.

    Google Scholar 

  • Nowell, A. R. M. & P. A. Jumars, 1987. Flumes: theoretical and experimental considerations for simulation of benthic environments. Oceanogr. Mar. Bio. Ann. Rev. 25: 91–112.

    Google Scholar 

  • Nowell, A. R. M., P. A. Jumars, R. L. Self & J. B. Southard, 1989. The effects of sediment transport and deposition on infauna: results obtained in a specifically designed flume. In S. R. Lopez, G. Taghon & J. Levinton (eds), Ecology of Marine Deposit Feeders. Springer Verlag: 215–228.

  • Officer, C. B, T. J. Smayda & R. Mann, 1982. Benthic filter feeding: a natural eutrophication control. Mar. Ecol. Prog. Ser. 2: 203–210.

    Google Scholar 

  • Rowden, A. A. & M. B. Jones, 1994. A contribution to the biology of the burrowing mud shrimp, Callianasssa subteranea. J.Mar. Biol Assoc. U.K. 74: 623–635.

    Article  Google Scholar 

  • Rumohr, H., 1993. Erfahrungen und Ergebnisse aus 7 Jahren Benthosmonitoring in der südlichen Ostsee. In P. DF. J. Duinker (ed.), Das biologische Monitoring der Ostsee im Insitut für Meereskunde Kiel, 1985-1992. IFM Report, 240, Inst. F. Meereskunde, Kiel.

    Google Scholar 

  • Rumohr, H., 1993. Monitoring the marine environment with imaging methods. Sci. Mar. 95: 129–138.

    Google Scholar 

  • Sternberg, R. W., R. V. Johnson, D. A. Cacchione & D. E. Drake, 1986. An instrument system for monitoring and sampling suspended sediment in the benthic boundary layer. Mar. Geol. 71: 187–199.

    Article  Google Scholar 

  • Thagon, G. L. & R. R. Greene, 1992. Utilisation of deposited and suspended particulate matter by benthic interface feeders. Limnol. Oceanogr. 67: 1370–1391.

    Google Scholar 

  • Thomsen, L., G. Graf, V. Martens & E. Steen, 1994. An instrument for sampling water from the benthic boundary layer. Cont. Shelf Res. 14: 871–882.

    Article  Google Scholar 

  • Thomsen, L., G. Graf, K. V. Juterzenka & U. Witte, 1995. An in situ experiment to investigate the depletion of seston above a suspension feeder field on the continental slope of the western Barents Sea. Mar. Ecol. Prog. Ser. 123: 295–300.

    Google Scholar 

  • Thomsen, L., S. Jähmlich, G. Graf, M. Friedrichs, B. Springer & S. Wanner, 1996. An instrument for aggregate studies in the benthic boundary layer. Mar. Geol. 135: 153–157.

    Article  CAS  Google Scholar 

  • Thomsen, L. & E. Flach, 1997. Mesocosm observations of fluxes of particulate matter within the benthic boundary layer. J. Sea Res. 37: 67–79.

    Article  Google Scholar 

  • Thomsen, L. & T. C. v. Weering, 1998. Spatial and temporal variability of particulate matter in the benthic boundary layer at the North East Atlantic Continental Margin (Goban Spur). Prog. Oceanogr. (in press)

  • Turley, C., 1980. Distribution and biodegradation of urea in coastal waters. Dissertation, University of Wales.

  • Vedel, A., B. B. Andersen & T. Riisgå rd, 1994. Field investigations of pumping activity of the facultativ filter-feeding polychaete Nereis diversicolorusing an improved infrared phototransducer system. Mar. Ecol. Progr. Ser. 103: 91–101.

    Google Scholar 

  • Zettler, M. L. & A. Bick, 1996. The analysis of small-andmesoscale dispersion pattern of Marenzelleria viridisPolychaeta: Spionidae in acoastal water of the southern Baltic. Helgol. Meeresunters. 502: 265–286.

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomsen, L., Jähmlich, S. An in situ experiment to investigate the modification of particulate matter and urea above a benthic sandy silt community in the Baltic Sea. Hydrobiologia 375, 353–361 (1998). https://doi.org/10.1023/A:1017019932033

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017019932033

Keywords

Navigation