GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Planta 148 (1980), S. 510-512 
    ISSN: 1432-2048
    Keywords: Auxin ; Cell wall pH ; Growth (roots) ; Proton flux and growth ; Root growth ; Zea
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract At concentrations inhibitory to the elongation of corn (Zea mays L.) roots, the auxins, indole-3-acetic acid (IAA) and α-naphthaleneacetic acid (α-NAA), cause an increase in the pH of the bathing medium; this increase occurs with an average latent period shorter than the latent period for the inhibitory effect of these auxins on elongation. Indole-2-carboxylic acid, an inactive structural analogue of IAA, and β-naphthaleneacetic acid, an inactive analogue of α-NAA, affect neither growth nor the pH of the medium. Since acid pH is known to promote and basic pH to inhibit root elongation, the data are consistent with the hypothesis that hormone-induced modification of cell-wall pH plays a role in the control of elongation of roots, as has been proposed for elongation of stems and coleoptiles.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2048
    Keywords: Auxin and gravitropism ; Gravitropism (signal transmission ; Root (gravitropism) ; Zea (gravitropism)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract There is general agreement that during root gravitropism some sort of growth-modifying signal moves from the cap to the elongation zone and that this signal ultimately induces the curvature that leads to reorientation of the root. However, there is disagreement regarding both the nature of the signal and the pathway of its movement from the root cap to the elongation zone. We examined the pathway of movement by testing gravitropism in primary roots of maize (Zea mays L.) from which narrow (0.5 mm) rings of epidermal and cortical tissue were surgically removed from various positions within the elongation zone. When roots were girdled in the apical part of the elongation zone gravitropic curvature occurred apical to the girdle but not basal to the girdle. Filling the girdle with agar allowed curvature basal to the girdle to occur. Shallow girdles, in which only two or three cell layers (epidermis plus one or two cortical cell layers) were removed, prevented or greatly delayed gravitropic curvature basal to the girdle. The results indicate that the gravitropic signal moves basipetally through the outermost cell layers, perhaps through the epidermis itself.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Planta 148 (1980), S. 510-512 
    ISSN: 1432-2048
    Keywords: Auxin ; Cell wall pH ; Growth (roots) ; Proton flux and growth ; Root growth ; Zea
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract At concentrations inhibitory to the elongation of corn (Zea mays L.) roots, the auxins, indole-3-acetic acid (IAA) and α-naphthaleneacetic acid (α-NAA), cause an increase in the pH of the bathing medium; this increase occurs with an average latent period shorter than the latent period for the inhibitory effect of these auxins on elongation. Indole-2-carboxylic acid, an inactive structural analogue of IAA, and β-naphthaleneacetic acid, an inactive analogue of α-NAA, affect neither growth nor the pH of the medium. Since acid pH is known to promote and basic pH to inhibit root elongation, the data are consistent with the hypothesis that hormone-induced modification of cell-wall pH plays a role in the control of elongation of roots, as has been proposed for elongation of stems and coleoptiles.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-2048
    Keywords: Acid-extension ; Acid-growth theory ; Avena (acid-growth) ; Elongation growth ; pH profile (cell elongation) ; Pisum (acid-growth) ; Zea (acid-growth)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The acid-growth theory predicts that a solution with a pH identical to that of the apoplast of auxintreated tissues (4.5–5.0) should induce elongation at a rate comparable to that of auxin. Different pH profiles for elongation have been obtained, however, depending on the type of pretreatment between harvest of the sections and the start of the pH-incubations. To determine the acid sensitivity under in vivo conditions, oat (Avena sativa L.) coleoptile, maize (Zea mays L.) coleoptile and pea (Pisum sativum L.) epicotyl sections were abraded so that exogenous buffers could penetrate the free space, and placed in buffered solutions of pH 3.5–6.5 without any preincubation. The extension, without auxin, was measured over the first 3 h. Experiments conducted in three laboratories produced similar results. For all three species, sections placed in buffer without pretreatment elongated at least threefold faster at pH 5.0 than at 6.0 or 6.5, and the rate elongation at pH 5.0 was comparable to that induced by auxin. Pretreatment of abraded sections with pH-6.5 buffer or distilled water adjusted to pH 6.5 or above gave similar results. We conclude that the pH present in the apoplast of auxin-treated coleoptile and stems is sufficiently low to account for the initial growth response to auxin.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Planta 203 (1997), S. S115 
    ISSN: 1432-2048
    Keywords: Key words:Arabidopsis ; Auxin ; Calcium ; Distal elongation zone ; Gravitropism (root) ; Zea
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract. A number of features of the gravitropic response of roots are not readily accounted for by the classical Cholodny-Went theory. These include the observations that (i) in the later stages of the response the growth gradient is reversed with no evident reversal of the auxin gradient; (ii) a major component of the acceleration of growth along the upper side occurs in the distal elongation zone (DEZ), a group of cells located between the meristem and the main elongation, not within the central elongation zone; and (iii) the initiation of differential growth in the DEZ appears to be independent of the establishment of auxin asymmetry. Alternative candidates for mediation of differential growth in the DEZ include calcium ions and protons. Gravi-induced curvature is accompanied by polar movement of calcium toward the lower side of the maize root tip and the DEZ is shown to be particularly sensitive to growth inhibition by calcium. Also, gravistimulation of maize roots causes enhanced acid efflux from the upper side of the DEZ. Evidence for gravi-induced modification of ion movements in the root tip includes changes in intracellular potentials and current flow. It is clear that there is more than one motor region in the root with regard to gravitropic responses and there is evidence that the DEZ itself consists of more than one class of responding cells. In order to gain a more complete understanding of the mechanism of gravitropic curvature, the physiological properties of the sub-zones of the root apex need to be thoroughly characterized with regard to their sensitivity to hormones, calcium, acid pH and electrical perturbations.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-2048
    Keywords: Key words:Arabidopsis (gravitropism ; root growth)  ;  Distal elongation zone  ;  Gravitropism  ;  Growth profiles  ;  Relative elemental growth rate  ;  Root growth
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract. Although Arabidopsis is an important system for studying root physiology, the localized growth patterns of its roots have not been well defined, particularly during tropic responses. In order to characterize growth rate profiles along the apex of primary roots of Arabidopsis thaliana (L.) Heynh (ecotype Columbia) we applied small charcoal particles to the root surface and analyzed their displacement during growth using an automated video digitizer system with custom software for tracking the markers. When growing vertically, the maximum elongation rate occurred 481 ± 50 μm back from the extreme tip of the root (tip of root cap), and the elongation zone extended back to 912 ± 137 μm. The distal elongation zone (DEZ) has previously been described as the apical region of the elongation zone in which the relative elemental growth rate (REGR) is ≤30% of the peak rate in the central elongation zone. By this definition, our data indicate that the basal limit of the DEZ was located 248 ± 30 μm from the root tip. However, after gravistimulation, the growth patterns of the root changed. Within the first hour of graviresponse, the basal limit of the DEZ and the position of peak REGR shifted apically on the upper flank of the root. This was due to a combination of increased growth in the DEZ and growth inhibition in the central elongation zone. On the lower flank, the basal limit of the DEZ shifted basipetally as the REGR decreased. These factors set up the gradient of growth rate across the root, which drives curvature.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-2048
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary A study was made of the time courses of growth promotion and the reversal of growth promotion upon the addition and withdrawal of various auxins. Growth promotion by 1-naphthaleneacetic acid (NAA) and 2,4-dichlorophenoxyacetic acid (2,4-D) occurs more slowly and is less vigorous than growth promotion by the same concentration of indoleacetic acid (IAA). The time required for the reversal of the stimulation of elongation by auxin is many times greater for 2,4-D-stimulated growth than for IAA- or NAA-stimulated growth (80 min vs. about 10 min). This difference appears to be due to the sluggish exit of 2,4-D since (1) experiments with labeled auxins show that 2,4-D moves out of the tissue more slowly than IAA, and (2) it is possible to shorten the time required for a decline in elongation rate after the removal of 2,4-D to 13 min by adding an auxin antagonist (p-chlorophenoxyisobutyric acid). The rapid reversal of the hormonal stimulation of growth is discussed in relation to possible mechanisms of action of auxin.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-2048
    Keywords: Acid growth ; Geotropism ; Helianthus ; Phototropism ; Proton secretion ; Zea
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract By placing seedlings of sunflower (Helianthus annuus L.) or maize (Zea mays L.) on agar plates containing a pH indicator dye it is possible to observe surface pH patterns along the growing seedling by observing color changes of the indicator dye. Using this method we find that in geotropically stimulated sunflower hypocotyls or maize coleoptiles there is enhanced proton efflux on the lower surface of the organ prior to the initiation of curvature. As curvature develops the pattern of differential acid efflux becomes more intense. A similar phenomenon is observed when these organs are exposed to unilateral illumination, i.e. enhanced acid efflux occurs on the dark side of the organ prior to the initiation of phototropic curvature and the pattern of differential acid efflux intensifies as phototropic curvature develops. These observations indicate that differential acid efflux occurs in response to tropistic stimuli and that the acid efflux pattern may mediate the development of tropistic curvatures.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-2048
    Keywords: Allium ; Calcium and gravitropism ; Morphactin ; Naphthylphthalamic acid ; Pisum (gravitropism) ; 2,3,5-Triiodobenzoic acid ; Zea (gravitropism)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Primary roots of maize (Zea mays L.) and pea (Pisum sativum L.) exhibit strong positive gravitropism. In both species, gravistimulation induces polar movement of calcium across the root tip from the upper side to the lower side. Roots of onion (Allium cepa L.) are not responsive to gravity and gravistimulation induces little or no polar movement of calcium across the root tip. Treatment of maize or pea roots with inhibitors of auxin transport (morphactin, naphthylphthalamic acid, 2,3,5-triiodobenzoic acid) prevents both gravitropism and gravity-induced polar movement of calcium across the root tip. The results indicate that calcium movement and auxin movement are closely linked in roots and that gravity-induced redistribution of calcium across the root cap may play an important role in the development of gravitropic curvature.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Planta 157 (1983), S. 150-157 
    ISSN: 1432-2048
    Keywords: Abscisic acid and root growth ; Acid efflux and root growth ; Aminoethoxyvinylglycine ; Gravitropism (root) ; Phaseic acid ; Pisum (root growth) ; Root growth (hormones) ; Zea (root growth)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Using an auxanometer and time-lapse cinematography we have studied the timing of abscisic acid (ABA) effects on elongation, gravitropic curvature, and hydrogen-ion efflux in several cultivars of maize (Zea mays L.). The effect of high concentrations (e.g. 0.1 mM) of ABA on root elongation is triphasic, including 1) a period of promotion lasting approximately 12 h, 2) a subsequent period of increasing inhibition lasting approximately 12h, and 3) gradual recovery to a rate within approximately 80% of the control rate. With lower concentrations of ABA (e.g. 0.1 μM) only the transient promotive phase is seen. Abscisic acid enhances ethylene biosynthesis in roots of maize but suppression of ethylene biosynthesis does not prevent the long-term inhibitory action of ABA on growth. Application of ABA (0.1 mM) to the upper surface of horizontally placed roots accelerates positive gravitropism. Application of ABA to the lower surface retards gravitropism and in some cases causes the roots to curve upward against the direction of gravity. These observations are consistent with our finding that the initial effect of ABA on root elongation is stimulatory. Since root gravitropism is rapid enough to be completed within the stimulatory phase of ABA action, the data argue against hypotheses of gravitropism based upon accumulation of ABA to inhibitory levels on the lower side of a hirizontal root.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...