GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Planta 148 (1980), S. 510-512 
    ISSN: 1432-2048
    Keywords: Auxin ; Cell wall pH ; Growth (roots) ; Proton flux and growth ; Root growth ; Zea
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract At concentrations inhibitory to the elongation of corn (Zea mays L.) roots, the auxins, indole-3-acetic acid (IAA) and α-naphthaleneacetic acid (α-NAA), cause an increase in the pH of the bathing medium; this increase occurs with an average latent period shorter than the latent period for the inhibitory effect of these auxins on elongation. Indole-2-carboxylic acid, an inactive structural analogue of IAA, and β-naphthaleneacetic acid, an inactive analogue of α-NAA, affect neither growth nor the pH of the medium. Since acid pH is known to promote and basic pH to inhibit root elongation, the data are consistent with the hypothesis that hormone-induced modification of cell-wall pH plays a role in the control of elongation of roots, as has been proposed for elongation of stems and coleoptiles.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2048
    Keywords: Auxin (action, binding, transport) ; Coleoptile (auxin and growth) ; N-1-naphthylphthalamic acid ; Zea (auxin action site)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract To locate functionally the primary site of auxin action in growing cells, the pool of auxin relevant to induction of growth in maize (Zea mays L.) coleoptile sections was determined. A positive correlation was consistently noted between growth and intracellular levels of indole-3-acetic acid (IAA), i.e. growth appears to be relatively independent of the external level of IAA. N-1-Naphthylphthalamic acid (NPA), a potent inhibitor of auxin transport, was used to enhance accumulation of IAA in coleoptile cells. From the use of NPA, it is shown that: 1) increasing the accumulation of IAA in cells, while the external concentration is held constant, resulted in a concomitant increase in growth, and 2) blocking the exit of IAA from cells with NPA sustained an IAA-induced growth response in the absence of externally applied IAA. Furthermore, the absence of any alterations in auxin binding to microsomal fractions by NPA indicates that the action of NPA in causing enhancement of auxin-induced growth is based upon its inhibition of efflux of IAA from the cells.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Planta 148 (1980), S. 510-512 
    ISSN: 1432-2048
    Keywords: Auxin ; Cell wall pH ; Growth (roots) ; Proton flux and growth ; Root growth ; Zea
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract At concentrations inhibitory to the elongation of corn (Zea mays L.) roots, the auxins, indole-3-acetic acid (IAA) and α-naphthaleneacetic acid (α-NAA), cause an increase in the pH of the bathing medium; this increase occurs with an average latent period shorter than the latent period for the inhibitory effect of these auxins on elongation. Indole-2-carboxylic acid, an inactive structural analogue of IAA, and β-naphthaleneacetic acid, an inactive analogue of α-NAA, affect neither growth nor the pH of the medium. Since acid pH is known to promote and basic pH to inhibit root elongation, the data are consistent with the hypothesis that hormone-induced modification of cell-wall pH plays a role in the control of elongation of roots, as has been proposed for elongation of stems and coleoptiles.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-2048
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Using recently developed techniques, we have investigated the binding of 45Ca2+ to membrane preparations from corn (Zea mays L) and oat (Avena sativa L) coleoptile tissue. Scatchard plot analysis reveals at least two Ca2+-binding sites in each tissue, a high affinity binding site (K m=7.7×10-7 M, n=6.9×10-10 mol·0.5 g f.w.-1 in corn, K m=4.93×10-6 M, n=2.29×10-9 mol·0.5 g f.w.-1 in Avena) and a low affinity binding site (K m=9.01×10-5 M, n=5.4×10-8 mol·0.5 g f.w.-1 in corn; K m=1.03×10-4 M, n=3.40×10-8 mol·0.5 g f.w.-1 in Avena). There is also some evidence of a third, lower affinity binding site in each tissue, especially corn. More detailed studies with corn coleoptile homogenates show that they contain a potent dialyzable inhibitor of Ca2+ binding. Monovalent cations were observed to be ineffective as inhibitors of Ca2+ binding in corn. However, of six divalent cations tested, all were capable of strong inhibition of Ca2+-binding and there appeared to be a relationship between size of the atomic radius of the ion and potency as an inhibitor of calcium binding.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...