GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-08-10
    Description: The majority of glaciers draining the Antarctic Peninsula Ice Sheet are thinning and retreating rapidly1. It is widely understood that these changes are driven by both a warming ocean and atmosphere. However, there are other mechanisms, including pinning points created by bathymetric highs and a reverse bed gradient, that are thought to have an important control on ice stream behaviour (Weertman, 1974; Jamieson et al., 2012). Our understanding of the interplay between these mechanisms and time-scales over which they are important is currently limited in time to the advent of satellite monitoring. By reconstructing the cause and style of ice stream retreat following the Last Glacial Maximum (LGM; 25-19 ka BP), it is possible to gain a greater insight into the mechanisms which drive glacier retreat (Ó Cofaigh et al., 2014). Sedimentary sequences deposited during the LGM and the subsequent deglaciation on polar continental shelves, provide an important archive of past changes (Ó Cofaigh et al., 2014). Previous studies have typically identified three sediment facies assemblages; sub-glacial, transitional and open marine (Ó Cofaigh et al., 2014; Domack et al., 1988; Smith et al., 2011). Transitional sediment facies are deposited at the grounding line and are often targeted for radiocarbon dating, as they represent the onset of glaciomarine sedimentation following the retreat of grounded ice (Domack et al., 1988; Smith et al., 2014; Heroy et al., 1996). Despite the development of depositional models to help explain the processes occurring at grounding lines (Powell et al., 1995 and 1996), there is still significant uncertainty about the temporal and spatial variations in grounding line sedimentation along and across a palaeo-ice stream trough. Here we use a multi-proxy approach (water content, shear strength, magnetic susceptibility, density, contents of biogenic opal, Total Organic Carbon and CaCO3, grain size distribution and X-radiographs) on marine sediment cores recovered from the Anvers-Hugo Palaeo-Ice Stream Trough (AHT), western Antarctic Peninsula shelf, to identify variability in transitional sediment facies deposited along and across the trough. We discuss possible controls on the variability in transitional sediment facies and how this is related to the rate and style of ice stream retreat. Our data reveal systematic variability in the types and volume of transitional sediments deposited during the last deglaciation of AHT. A detailed analysis of the transitional sediment facies shows that this variability reflects different phases of ice stream behaviour. Large volumes of ice proximal sediment facies recovered seawards of grounding zone wedges are indicative of episodes of grounding line still-stands. Re-advances of the grounding line, concurrent with a shallowing of the reverse bed gradient and a narrowing of the trough, appear to have occurred during the final stages of deglaciation. This is indicated by interlaminated ice-proximal and ice-distal sediment facies within inner shelf cores. Transitional sediment variability additionally captures the evolution of the ice stream during deglaciation, including the formation of a small ice shelf on the inner shelf. Keywords: Antarctic Peninsula, Last Glacial Maximum, ice stream, sediment cores References Cook, A. J., Holland, P. R., Meredith, M. P., Murray, T., Luckman, A. & Vaughan, D. G, 2016. Ocean forcing of glacier retreat in the western Antarctic Peninsula. Science, 353, 283-286. Weertman, J, 1974. Stability of the Junction of an Ice Sheet and an Ice Shelf. Journal of Glaciology, 13, 3-11. Jamieson, S. S. R., Vieli, A., Livingstone, S. J., Cofaigh, C. O., Stokes, C., Hillenbrand, C.-D. & Dowdeswell, J. A, 2012. Ice-stream stability on a reverse bed slope. Nature Geoscience, 5, 799-802. Ó Cofaigh, C., Davies, B. J., Livingstone, S. J., Smith, J. A., Johnson, J. S., Hocking, E. P., Hodgson, D. A., Anderson, J. B., Bentley, M. J., Canals, M., Domack, E., Dowdeswell, J. A., Evans, J., Glasser, N. F., Hillenbrand, C.-D., Larter, R. D., Roberts, S. J. & Simms, A. R, 2014. Reconstruction of ice-sheet changes in the Antarctic Peninsula since the Last Glacial Maximum. Quaternary Science Reviews, 100, 87-110. Domack, E. W. & Harris, P. T, 1998. A new depositional model for ice shelves, based upon sediment cores from the Ross Sea and the Mac. Robertson shelf, Antarctica. Annals of Glaciology, 27, 281-284. Smith, J. A., Hillenbrand, C.-D., Kuhn, G., Larter, R. D., Graham, A. G. C., Ehrmann, W., Moreton, S. G. & Forwick, M, 2011. Deglacial history of the West Antarctic Ice Sheet in the western Amundsen Sea Embayment. Quaternary Science Reviews, 30, 488-505. Smith, J. A., Hillenbrand, C.-D., Kuhn, G., Klages, J. P., Graham, A. G. C., Larter, R. D., Ehrmann, W., Moreton, S. G., Wiers, S. & Frederichs, T, 2014. New constraints on the timing of West Antarctic Ice Sheet retreat in the eastern Amundsen Sea since the Last Glacial Maximum. Global and Planetary Change, 122, 224-237. Heroy, D. C. & Anderson, J. B, 1996. Radiocarbon constraints on Antarctic Peninsula Ice Sheet retreat following the Last Glacial Maximum (LGM). Quaternary Science Reviews, 26, 3286-3297. Powell, R. D., Dawber, M., McInnes, J. N. & Pyne, A. R, 1996. Observations of the Grounding-line Area at a Floating Glacier Terminus. Annals of Glaciology, 22, 217-223. 1Powell, R. D. & Domack, E, 1995. Modern Glacimarine Environments. In: Glacial Environments, Volume 1 (ed. J Menzies). Butterworth-Heinemann, 445-486.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-08-10
    Description: Modern global change affects not only the polar north but also, and to increasing extent, the southern high latitudes, especially the Antarctic regions covered by the West Antarctic Ice Sheet (WAIS). Consequently, knowledge of the mechanisms controlling past WAIS dynamics and WAIS behaviour at the last deglaciation is critical to predict its development in a future warming world. Geological and paleobiological information from major drainage areas of the WAIS, like the Amundsen Sea Embayment, shed light on the history of the WAIS glaciers. Sediment records obtained from a deep inner shelf basin north of the Getz Ice Shelf document a deglacial warming in three phases. Above a glacial diamicton and a sediment package barren of microfossils that document sediment deposition by grounded ice and below an ice shelf or perennial sea ice cover (possibly fast ice), respectively, a sediment section with diatom assemblages dominated by sea ice taxa indicates ice shelf retreat and seasonal ice-free conditions. This conclusion is supported by diatom-based summer temperature reconstructions. The early retreat was followed by a phase, when exceptional diatom ooze was deposited between 12,000 and 13,000 cal. years B.P. Microscopical inspection of this ooze revealed excellent preservation of diatom frustules of the species Corethron pennatum together with vegetative Chaetoceros, thus an assemblage usually not preserved in the sedimentary record. Sediments succeeding this section contain diatom assemblages indicating rather constant Holocene cold water conditions with seasonal sea ice. The deposition of the diatom ooze can be related to changes in hydrographic conditions including strong advection of nutrients. However, sediment focussing in the partly steep inner shelf basins cannot be excluded as a factor enhancing the thickness of the ooze deposits. It is not only the presence of the diatom ooze but also the exceptional preservation and the species composition of the diatom assemblage, which point to specific scenarios involving e.g. changes in the food web that can be related to warmer surface water temperatures. Such warming of shelf waters may be related with an overshooting Atlantic Meridional Overturning Circulation (AMOC) and strong injection of warmer North Atlantic Deep Water into the Southern Ocean water masses at Termination I. Such finding may highlight the effects of AMOC changes on Antarctic ice shelf extent and coastal ecosystems. Keywords: WAIS, Amundsen Sea Embayment, diatoms, deglacial warming
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-08-10
    Description: We will present new multibeam bathymetry data that make the Anvers-Hugo Trough west of the Antarctic Peninsula one of the most completely surveyed palaeo-ice stream pathways in Antarctica. We interpret landforms revealed by these data as indicating that subglacial water availability played an important role in facilitating ice stream flow in the trough during late Quaternary glacial periods. Specifically, we observe a set of northward-shoaling valleys that are eroded into the upstream edge of a sedimentary basin, extend northwards from a zone containing landforms typical of erosion by subglacial water flow, and coincide spatially with the onset of mega-scale glacial lineations. Water was likely supplied to the ice stream bed episodically as a result of outbursts from a subglacial lake previously hypothesized to have been located in the Palmer Deep basin on the inner continental shelf. In a palaeo-ice stream confluence area, close juxtaposition of mega-scale glacial lineations with landforms that are characteristic of slow, dry-based ice flow, suggests that water availability was also an important control on the lateral extent of these palaeo-ice streams. These interpretations are consistent with the hypothesis that subglacial lakes or areas of elevated geothermal heat flux play a critical role in the onset of many large ice streams. The interpretations also have implications for the dynamic behaviour of the Anvers-Hugo Trough palaeo-ice stream and, potentially, of several other Antarctic palaeo-ice streams. Keywords: multibeam bathymetry, ice stream, subglacial water, landform
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    SCAR
    In:  EPIC3Past Antarctic Ice Sheet Dynamics (PAIS) Conference, Trieste, 2017-09-10-2017-09-15SCAR
    Publication Date: 2018-08-10
    Description: Reconstruction of the glacial dynamics of the Antarctic ice sheets during the past by studying records from their margin is essential to evaluate their stability and to anticipate their contribution to future sea level rise. Recently, the first direct evidence for a paleo-subglacial lake on the Antarctic continental shelf was reported from a small bedrock basin in Pine Island Bay, West Antarctica (Kuhn et al., 2017). The evidence is based on a distinct sediment facies and geochemical pore water signatures, i.e. low chloride concentrations, in a marine sediment core (PS69/288). These data indicate that the sediment in the lower part of the core was deposited under a low-energy subglacial lake setting. They also show that the location of the subglacial lake is consistent with the predicted distribution of subglacial lakes based on bathymetric data. Here we report further evidence for a paleo-subglacial lake based on changes in Be-10 concentrations in the sediments. A significant down-core decrease in the Be-10 concentration indicates very limited input of meteoric Be-10 to the sediments in the lower part of the core, suggesting a depositional environment that was isolated from the open ocean. This is consistent with the proposed subglacial lake setting. In detail, the Be-10 concentration shows a further drop within a sand, silt and mud interval from ca. 580 to 470 cm core depth that was interpreted to have been deposited during the transition from the subglacial lake to a sub-ice shelf cavern by grounding line retreat in that area at about 11 kyrs B.P. (Hillenbrand et al., 2013, Kuhn et al., 2017). The lowered Be-10 concentration at the base of this interval probably results from the dominant supply of sediment that had been deeply buried under the West Antarctic Ice Sheet (WAIS) for a very long time. Above a minor up-core increase from 464 to 324 cm, the Be-10 concentration decreases again at about 260 cm. This decrease may correspond to three possible factors: 1.) increased supply of sediments from below the ice sheet (possible meltwater plumes), 2.) an episode of permanent sea-ice cover, or 3.) a re-advance of the ice shelf. Above 260 cm the Be-10 concentration increases significantly toward the top of the core, indicating that an open marine setting had established at the core site. This data provides new insight into a more dynamic behaviour of the WAIS in Pine Island Bay during the Holocene. Overall, the Be-10 concentration of the sediments is a powerful tool to study paleo-subglacial lakes in Antarctica and processes of ice sheet to ice shelf transition during the subsequent deglaciation. Keywords: Subglacial Lake, Be-10, Ice sheet retreat, West Antarctica References Hillenbrand, C.-D., Kuhn, G., Smith, J.A., Gohl, K., Graham, A.G., Larter, R.D., Klages, J.P., Downey, R., Moreton, S.G., Forwick, M., Vaughan, D.G., 2013. Grounding-line retreat of the West Antarctic Ice Sheet from inner Pine Island Bay. Geology 41, 35–38. doi:10.1130/G33469.1. Past Antarctic Ice Sheet Dynamics (PAIS) Conference September 10-15th 2017, Trieste - Italy Kuhn, G., Hillenbrand, C.-D, Kasten, S., Smith, J.A., Nitsche, F.O., Frederichs, T., Wiers, S., Ehrmann, W., Klages, J.P., Mogollón, J.M. (in press). Evidence for a palaeo-subglacial lake on the Antarctic continental shelf. Nature Communications.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-08-10
    Description: The history of glaciations on Southern Hemisphere sub-polar islands is unclear. Debate surrounds the extent and timing of the last glacial advance and termination on sub-Antarctic South Georgia in particular. Using sea-floor geophysical data and marine sediment cores, we resolve the record of past glaciation offshore of South Georgia giving insight into glacier response to climate variability through the transition from the Last Glacial Maximum to Holocene. We show a widespread, coherent sea-bed imprint of shelf-wide ice-sheet advance and retreat in the form of glacially-carved cross-shelf troughs, suites of end and recessional moraines, as well as populations of streamlined bedforms. Glacial troughs began to infill with sediments after c. 18 ka B.P. consistent with interpretations of an extensive last glacial advance and early onset of a progressive, and potentially rapid, deglaciation to coastal limits. A fjord-mouth moraine formed during renewed glacier resurgence between c. 15,170 and 13,340 yrs ago. From the geometry of moraines in adjacent fjords, we infer that many of South Georgia’s glaciers advanced during this period of cooler, wetter climate, known as the Antarctic Cold Reversal, extending the geographic footprint of the cryospheric response to an Antarctic climate pattern into the Atlantic sector of the Southern Ocean. We conclude that the last glaciation of South Georgia was extensive, and the sensitivity of its glaciers to climate variability during the last termination more significant than implied by previous studies. Keywords: Sub-Antarctic; ice-cap reconstruction; multibeam bathymetry; sediment cores
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-08-10
    Description: During expedition PS104 with RV Polarstern in February and March 2017 the MARUM MeBo 70 seabed drilling system was deployed at nine sites on the continental shelf of the Amundsen Sea Embayment, West Antarctica. A total of 57 meters of sediment core were recovered from 11 boreholes located in Pine Island Bay, Pine Island Trough, Bear Ridge and Cosgrove-Abbot Trough with recovery rates ranging from 7 to 76%. The main scientific objective of the drilling was to reconstruct the Late Mesozoic to Quaternary environmental history in this part of the Antarctic continental margin, with a special focus on the past dynamics of the marine based West Antarctic Ice Sheet (WAIS) from its inception to the last glacial cycle. Another main goal of the expedition was to test the suitability of the MeBo drill system for operating on the Antarctic continental shelf and recovering pre-glacial and glacially influenced sedimentary sequences. Here we will present the first results of sedimentological investigations carried out on the drill cores. These comprise (i) visual lithological descriptions, (ii) CT-scanning records of core stratigraphy, sedimentary structures, and possible artefacts induced by the drilling process, (iii) measurements of physical properties performed with a multi-sensor core logger, and (iv) characterisation of the geochemical composition of the drilled sedimentary strata using X-ray fluorescence (XRF) scanner data. Preliminary biostratigraphic investigations conducted on board ship indicated that the recovered sedimentary strata were deposited during various time slices spanning from the Late Cretaceous–Palaeocene to the Late Quaternary. We will provide an update of these initial chronological findings. Keywords: Drill cores, shelf sediments, West Antarctic Ice Sheet.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-08-10
    Description: The West Antarctic Ice Sheet (WAIS) represents a large potential source of sea level rise. Observations of ice sheet instabilities in the region have increased in recent decades, with a 77% recorded increase in the net loss of glaciers the Amundsen Sea Embayment (ASE) sector of the WAIS since 1973. This has been attributed to increasing basal melting of floating ice shelves caused by warmer Circumpolar Deep Water (CDW) upwelling onto the shelf. Understanding the role of CDW in glacial retreat in the ASE over longer timescales is key to reducing the uncertainty of future sea level predictions. The aim of this research is to reconstruct CDW incursions onto the ASE continental shelf and correlate them to the glacial history of the area since the Last Glacial Maximum. To achieve this, it is crucial to develop a proxy for detecting the presence or absence of CDW. Whilst foraminiferal preservation is rare in this locality due to the corrosive nature of water masses around the Antarctic Peninsula, several cores from the ASE contain specimens including the benthic species Trifarina angulosa, which is a shallow infaunal species therefore ideal for Mg/Ca temperature reconstructions. Here we present a core-top calibration for T. angulosa for temperatures between -1.75°C and +1.5°C from sites situated in the Southern Ocean. We apply this Mg/Ca temperature calibration to down-core archives at several sites, which are well-dated using radiocarbon. The results are presented here along with benthic and planktonic foraminiferal stable isotope data and complementary trace metal data. Keywords: Circumpolar deep water, foraminifera, Mg/Ca
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-08-10
    Description: Subglacial meltwater largely facilitates rapid but nonlinear ice flow beneath concurrent ice streams, and there is widespread evidence for a dynamic subglacial water system beneath the Antarctic Ice Sheet. It steers and affects the pattern of ice flow and is a direct result of boundary processes acting at the ice sheet bed, i.e. pressure-induced basal melting. Consequently, the occurrence of subglacial meltwater plays an important role in bedrock erosion, subsequent re-deposition, and in shaping the topography of ice-sheet beds. Here we present new geological, geophysical, and geochemical data from sediment cores recovered from the continental shelf in Pine Island Bay. We interpret the data as reliably indicating palaeo-subglacial lake deposition beneath the formerly expanded West Antarctic Ice Sheet, presumably during and/or subsequent to the Last Glacial Maximum (LGM) (Kuhn et al. 2017). Characteristic changes of sedimentary facies and geochemical profiles within these cores that were recovered on RV Polarstern expeditions ANT-XXIII/4 (2006) and ANT-XXVI/3 (2010), support the presence of an active and expanded subglacial lake system in at least five basins. The basins, which also have been targeted by sediment coring during the recent RV Polarstern cruise PS104 (2017), had been carved into bedrock over previous glacial cycles and were then filled with several meters of sediments. These findings have important implications for palaeo ice-sheet dynamics, suggesting the presence of considerable amounts of water lubricating the ice-bed interface, eventually leading to the subglacial deposition of lake sediments and water-saturated soft tills. Based on our recent findings, we conclude that the transition from the subglacial lake to an ocean-influenced environment took place during deglaciation at the transition from the LGM to the Holocene. We suggest that the ice sheet thinned and the subglacial lake basins successively transformed to sub-ice cavities, flushed by tidal currents at this time. We will present estimates of ice thickness for buoyancy at the grounding line for the time when the grounding line retreated landward across the rim of the subglacial lake. These estimates are based on the bathymetric setting, a glacial isostatic adjustment model, a global sea level curve, and the available chronological information. Our findings have implications for ice sheet models, which need to consider the predominantly non-linear effects related to subglacial hydrology. Keywords: West Antarctic Ice Sheet (WAIS), Sub-Ice processes, Deglaciation processes References Kuhn, G., Hillenbrand, C.-D., Kasten, S., Smith, J. A., Nitsche, F. O., Frederichs, T., Wiers, S., Ehrmann, W., Klages, J. P., Mogollón, J. M., 2017. Evidence for a palaeo-subglacial lake on the Antarctic continental shelf. Nature Communications, 8, 15591.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-05-18
    Description: Pine Island Glacier (PIG) is one of the fastest changing ice streams of the West Antarctic Ice Sheet. Its ice shelf underwent major calving events throughout recent years. The main factor for the considerable mass loss of PIG is sub-ice shelf melting caused by the advection of warm deep water into Pine Island Bay on the shelf of the southeastern Amundsen Sea Embayment (ASE). Unique ice conditions during expedition PS104 with RV “Polarstern” to the ASE in February-March 2017 allowed to recover a 7.59 m-gravity core in an area that had been covered by the PIG ice shelf until 2015. The sediment core PS104_008-2 was taken at a water depth of 698 m near the eastern margin of the ice shelf. The new sedimentological data from the core will provide insights into sub-ice shelf environmental conditions and the Holocene history of meltwater plume deposition and oceanic ice-shelf melting. We will present results of our new multi-proxy study, including down-core lithological changes, grain size distribution and excess 210Pb data. Occasional occurrence of calcareous benthic foraminifera shells in the lower part of the core will allow the application of radiocarbon dating. Coupled with the excess 210Pb data, the AMS 14C ages will provide constraints on sub-ice shelf sediment accumulation rates and the discharge rates of subglacial meltwater plumes.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    SCAR
    In:  EPIC3POLAR2018 SCAR/IASC Open Science Conference, Davos, 2018-06-19-2018-06-23Davos, SCAR
    Publication Date: 2020-05-18
    Description: Reconstruction of the past dynamics of the Antarctic ice sheets by studying records from their margin is essential to evaluate their stability and their contribution to future sea level rise. Recently, the first direct evidence for a paleo-subglacial lake on the Antarctic continental shelf was reported from a sediment core from a small bedrock basin in Pine Island Bay (PIB), West Antarctica. Here we report further evidence for this paleosubglacial lake based on down-core changes in Be-10 concentrations in the sediments. Very low Be-10 concentration in the lower part of the core indicate limited input of meteoric Be-10, suggesting deposition of the corresponding sediments in isolation from the open ocean. The Be-10 concentration shows a drop within a sand, silt and mud interval in the middle part of the core that was interpreted to result from deposition during the transition from the subglacial lake to a sub-ice shelf cavern caused by grounding line retreat in PIB around 11 kyrs B.P.. The Be-10 concentration increases significantly toward the top of the core, indicating the establishment of an open marine setting later during the Holocene. In addition, we report new Be-10 data from marine sediment cores in other parts of PIB. Our results demonstrate that Be-10 concentration changes in marine sediments from glaciated margins are a valuable recorder of ice sheet - ice shelf transitions.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...