GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Publikationsart
Erscheinungszeitraum
  • 1
    Publikationsdatum: 2018-08-10
    Beschreibung: Marine and terrestrial geological and marine geophysical data that constrain deglaciation since the Last Glacial Maximum (LGM) of the sector of the West Antarctic Ice Sheet (WAIS) draining into the Amundsen Sea and Bellingshausen Sea have been collated and used as the basis for a set of time-slice reconstructions. The drainage basins in these sectors constitute a little more than one-quarter of the area of the WAIS, but account for about one-third of its surface accumulation. Their mass balance is becoming increasingly negative, and therefore they account for an even larger fraction of current WAIS discharge. If all of the ice in these sectors of the WAIS was discharged to the ocean, global sea level would rise by ca. 2 m. There is compelling evidence that grounding lines of palaeo-ice streams were at, or close to, the continental shelf edge along the Amundsen Sea and Bellingshausen Sea margins during the last glacial period. However, the few cosmogenic surface exposure ages and ice core data available from the interior of West Antarctica indicate that ice surface elevations there have changed little since the LGM. In the few areas from which cosmogenic surface exposure ages have been determined near the margin of the ice sheet, they generally suggest that there has been a gradual decrease in ice surface elevation since pre-Holocene times. Radiocarbon dates from glacimarine and the earliest seasonally open marine sediments in continental shelf cores that have been interpreted as providing approximate ages for post-LGM grounding-line retreat indicate different trajectories of palaeo-ice stream recession in the Amundsen Sea and Bellingshausen Sea embayments. The areas were probably subject to similar oceanic, atmospheric and eustatic forcing, in which case the differences are probably largely a consequence of how topographic and geological factors have affected ice flow, and of topographic influences on snow accumulation and warm water inflow across the continental shelf. Pauses in ice retreat are recorded where there are “bottle necks” in cross-shelf troughs in both embayments. The highest retreat rates presently constrained by radiocarbon dates from sediment cores are found where the grounding line retreated across deep basins on the inner shelf in the Amundsen Sea, which is consistent with the marine ice-sheet instability hypothesis. Deglacial ages from the Amundsen Sea Embayment (ASE) and Eltanin Bay (southern Bellingshausen Sea) indicate that the ice sheet had already retreated close to its modern limits by early Holocene time, which suggests that the rapid ice thinning, flow acceleration, and grounding line retreat observed in this sector over recent decades are unusual in the context of the past 10,000 years.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2018-08-10
    Beschreibung: The Weddell Sea sector is one of the main formation sites for Antarctic Bottom Water and an outlet for about one fifth of Antarctica’s continental ice volume. Over the last few decades, studies on glacialegeological records in this sector have provided conflicting reconstructions of changes in ice-sheet extent and ice-sheet thickness since the Last Glacial Maximum (LGM at ca 23e19 calibrated kiloyears before present, cal ka BP). Terrestrial geomorphological records and exposure ages obtained from rocks in the hinterland of the Weddell Sea, ice-sheet thickness constraints from ice cores and some radiocarbon dates on offshore sediments were interpreted to indicate no significant ice thickening and locally restricted grounding-line advance at the LGM. Other marine geological and geophysical studies concluded that subglacial bedforms mapped on theWeddell Sea continental shelf, subglacial deposits and sediments over-compacted by overriding ice recovered in cores, and the few available radiocarbon ages from marine sediments are consistent with major ice-sheet advance at the LGM. Reflecting the geological interpretations, different icesheet models have reconstructed conflicting LGM ice-sheet configurations for the Weddell Sea sector. Consequently, the estimated contributions of ice-sheet build-up in the Weddell Sea sector to the LGM sealevel low-stand of w130 m vary considerably. In this paper, we summarise and review the geological records of past ice-sheet margins and past icesheet elevations in the Weddell Sea sector. We compile marine and terrestrial chronological data constraining former ice-sheet size, thereby highlighting different levels of certainty, and present two alternative scenarios of the LGM ice-sheet configuration, including time-slice reconstructions for post- LGM grounding-line retreat. Moreover, we discuss consistencies and possible reasons for inconsistencies between the various reconstructions and propose objectives for future research. The aim of our study is to provide two alternative interpretations of glacialegeological datasets on Antarctic Ice- Sheet History for the Weddell Sea sector, which can be utilised to test and improve numerical icesheet models
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2018-08-10
    Beschreibung: Subglacial lakes are widespread beneath the Antarctic Ice Sheet but their control on ice-sheet dynamics and their ability to harbour life remain poorly characterized. Here we present evidence for a palaeo-subglacial lake on the Antarctic continental shelf. A distinct sediment facies recovered from a bedrock basin in Pine Island Bay indicates deposition within a low-energy lake environment. Diffusive-advection modelling demonstrates that low chloride concentrations in the pore water of the corresponding sediments can only be explained by initial deposition of this facies in a freshwater setting. These observations indicate that an active subglacial meltwater network, similar to that observed beneath the extant ice sheet, was also active during the last glacial period. It also provides a new framework for refining the exploration of these unique environments.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Format: application/pdf
    Format: application/zip
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2018-08-10
    Beschreibung: Glaciological and oceanographic observations coupled with numerical models show that warm Circumpolar Deep Water (CDW) incursions onto the West Antarctic continental shelf cause melting of the undersides of floating ice shelves. Because these ice shelves buttress glaciers feeding into them, their ocean-induced thinning is driving Antarctic ice-sheet retreat today. Here we present a multi-proxy data based reconstruction of variability in CDW inflow to the Amundsen Sea sector, the most vulnerable part of the West Antarctic Ice Sheet, during the Holocene epoch (from 11.7 thousand years ago to the present). The chemical compositions of foraminifer shells and benthic foraminifer assemblages in marine sediments indicate that enhanced CDW upwelling, controlled by the latitudinal position of the Southern Hemisphere westerly winds, forced deglaciation of this sector from at least 10,400 years ago until 7,500 years ago—when an ice-shelf collapse may have caused rapid ice-sheet thinning further upstream—and since the 1940s. These results increase confidence in the predictive capability of current ice-sheet models.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    facet.materialart.
    Unbekannt
    SCAR
    In:  EPIC3POLAR2018 SCAR/IASC Open Science Conference, Davos, 2018-06-19-2018-06-23Davos, SCAR
    Publikationsdatum: 2020-05-18
    Beschreibung: Pine Island Glacier (PIG) is one of the fastest changing ice streams of the West Antarctic Ice Sheet. Its ice shelf underwent major calving events throughout recent years. The main factor for the considerable mass loss of PIG is sub-ice shelf melting caused by the advection of warm deep water into Pine Island Bay on the shelf of the southeastern Amundsen Sea Embayment (ASE). Unique ice conditions during expedition PS104 with RV “Polarstern” to the ASE in February-March 2017 allowed to recover a 7.59 m-gravity core in an area that had been covered by the PIG ice shelf until 2015. The sediment core PS104_008-2 was taken at a water depth of 698 m near the eastern margin of the ice shelf. The new sedimentological data from the core will provide insights into sub-ice shelf environmental conditions and the Holocene history of meltwater plume deposition and oceanic ice-shelf melting. We will present results of our new multi-proxy study, including down-core lithological changes, grain size distribution and excess 210Pb data. Occasional occurrence of calcareous benthic foraminifera shells in the lower part of the core will allow the application of radiocarbon dating. Coupled with the excess 210Pb data, the AMS 14C ages will provide constraints on sub-ice shelf sediment accumulation rates and the discharge rates of subglacial meltwater plumes.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Conference , notRev
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2022-10-06
    Beschreibung: Where polar ice sheets meet the coast, they can flow into the sea as floating ice shelves. The seabed underneath is in complete darkness, and may be Earth’s least known surface habitat. Few taxa there have been fully identified to named species (see Supplemental information) — remarkable for a habitat spanning nearly 1.6 million km2. Glimpses of life there have come from cameras dropped through 10 boreholes, mainly at the three largest Antarctic ice shelves — the Ross (McMurdo), Filchner-Ronne and Amery. Pioneering studies of life under boreholes found distinct morphotypes of perhaps 〉50 species. Here, we report remarkable growth and persistence over thousands of years of benthic faunal species collected in 2018 from the seabed under the Ekström Ice Shelf (EIS), Weddell Sea.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2022-06-02
    Beschreibung: The Ekström Ice Shelf is one of numerous small ice shelves that fringe the coastline of western Dronning Maud Land, East Antarctica. Reconstructions of past ice-sheet extent in this area are poorly constrained, due to a lack of geomorphological evidence. Here, we present a compilation of geophysical surveys in front of and beneath the Ekström Ice Shelf, to identify and interpret evidence of past ice-sheet flow, extent and retreat. The sea floor beneath the Ekström Ice Shelf is dominated by an incised trough, which extends from the modern-day grounding line onto the continental shelf. Our surveys show that mega-scale glacial lineations cover most of the mouth of this trough, terminating 11 km away from the continental shelf break, indicating the most recent minimal extent of grounded ice in this region. Beneath the front ∼30 km of the ice shelf measured from the ice shelf edge towards the inland direction, the sea floor is characterised by an acoustically transparent sedimentary unit, up to 45 m thick. This is likely composed of subglacial till, further corroborating the presence of past grounded ice cover. Further inland, the sea floor becomes rougher, interpreted as a transition from subglacial tills to a crystalline bedrock, corresponding to the outcrop of the volcanic Explora Wedge at the sea floor. Ice retreat in this region appears to have happened rapidly in the centre of the incised trough, evidenced by a lack of overprinting of the lineations at the trough mouth. At the margins of the trough uniformly spaced recessional moraines suggest ice retreated more gradually. We estimate the palaeo-ice thickness at the calving front around the Last Glacial Maximum to have been at least 305 to 320 m, based on the depth of iceberg ploughmarks within the trough and sea level reconstructions. Given the similarity of the numerous small ice shelves along the Dronning Maud Land coast, these findings are likely representative for other ice shelves in this region and provide essential boundary conditions for palaeo ice-sheet models in this severely understudied region.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2023-08-16
    Beschreibung: The marine habitat beneath Antarctica’s ice shelves spans ~1.6 million km2, and life in this vast and extreme environment is among Earth’s least accessible, least disturbed and least known, yet likely to be impacted by climate-forced warming and environmental change. Although competition among biota is a fundamental structuring force of ecological communities, hence ecosystem functions and services, nothing was known of competition for resources under ice shelves, until this study. Boreholes drilled through a ~ 200 m thick ice shelf enabled collections of novel sub-ice-shelf seabed sediment which contained fragments of biogenic substrata rich in encrusting (lithophilic) macrobenthos, principally bryozoans – a globally-ubiquitous phylum sensitive to environmental change. Analysis of sub-glacial biogenic substrata, by stereo microscopy, provided first evidence of spatial contest competition, enabling generation of a new range of competition measures for the sub-ice-shelf benthic space. Measures were compared with those of global open-water datasets traversing polar, temperate and tropical latitudes (and encompassing both hemispheres). Spatial competition in sub-ice-shelf samples was found to be higher in intensity and severity than all other global means. The likelihood of sub-ice-shelf competition being intraspecific was three times lower than for open-sea polar continental shelf areas, and competition complexity, in terms of the number of different types of competitor pairings, was two-fold higher. As posited foran enduring disturbance minimum, a specific bryozoan clade was especially competitively dominant in sub-ice shelf samples compared with both contemporary and fossil assemblage records. Overall, spatial competition under an Antarctic ice shelf, as characterised by bryozoan interactions, was strikingly different from that of open- sea polar continental shelf sites, and more closely resembled tropical and temperate latitudes. This study represents the first analysis of sub-ice-shelf macrobenthic spatial competition and provides a new ecological baseline for exploring, monitoring and comparing ecosystem response to environmental change in a warming world.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2023-08-15
    Beschreibung: Observations of rapid ongoing grounding line retreat, ice shelf thinning and accelerated ice flow from the West Antarctic Ice Sheet (WAIS) may forebode a possible collapse if global temperatures continue to increase. Understanding and reconstructing West Antarctic Ice Sheet dynamics in past warmer-than-present times will inform about its behavior as an analogue for future climate scenarios. International Ocean Discovery Program (IODP) Expedition 379 visited the Amundsen Sea sector of Antarctica to obtain geological records suitable for this purpose. During the expedition, cores from two drill sites at the Resolution Drift on the continental rise returned sediments whose deposition was possibly influenced by West Antarctic Ice Sheet dynamics from late Miocene to Holocene times. To examine the West Antarctic Ice Sheet dynamics, shipboard physical properties and sedimentological data are correlated with seismic data and extrapolated across the Resolution Drift via core-log-seismic integration. An interval with strongly variable physical properties, high diatom abundance and ice-rafted debris occurrence, correlating with partially high amplitude seismic reflection characteristics was identified between 4.2 and 3.2 Ma. Sedimentation during this interval is interpreted as having occurred during an extended warm period with a dynamic West Antarctic Ice Sheet in the Amundsen Sea sector. These records compare to those of other drill sites in the Ross Sea and the Bellingshausen Sea, and thus suggest an almost simultaneous occurrence of extended warm periods in all three locations.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...