GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • PANGAEA  (20)
  • 2020-2024  (19)
  • 2000-2004  (1)
Document type
Keywords
Years
Year
  • 1
    Publication Date: 2023-01-30
    Description: Copepod samples were taken during the Antarctic expedition PS 79 (ANT XXVIII/2) with RV Polarstern (Cape Town – Cape Town, 3 Dec 2011 – 5 Jan 2012). Copepods were collected at Station 53 (60° 3.22'S, 0° 2.14' E) in the Antarctic Weddell Gyre on 28 December 2011 by vertical bongo net hauls down to 300 m depth. Specimens of C. acutus (210 copepodids CV and 160 females) and of C. propinquus (125 females, no CV stages available) were gently sorted from the catch, maintained alive in filtered seawater at 0°C in a cooling container on board and transported to Germany at 0°C by airplane. Feeding carbon-labelled diatoms to these copepods during 9 days of feeding ,13C elucidated assimilation and turnover rates of copepod total lipids as well as specific fatty acids and alcohols. The 13C incorporation into these compounds was monitored by compound-specific stable isotope analysis (CSIA). The differences in lipid assimilation and turnover clearly show that the copepod species exhibit a high variability and plasticity to adapt their lipid production to their various life phases.
    Keywords: Antarctic; ANT-XXVIII/2; BONGO; Bongo net; carbon turnover; CSIA; lipids; Polarstern; PS79; PS79/053-5; South Atlantic Ocean; Zooplankton
    Type: Dataset
    Format: application/vnd.openxmlformats-officedocument.spreadsheetml.sheet, 5.4 MBytes
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven
    Publication Date: 2023-03-16
    Keywords: ARK-VII/2; AWI_BioOce; Biological Oceanography @ AWI; Chlorophyll a; Date/Time of event; DEPTH, water; Elevation of event; Event label; Fluorometry; Greenland Sea; Latitude of event; Longitude of event; MULT; Multiple investigations; Polarstern; PS17; PS17/098; PS17/099; PS17/100; PS17/102; PS17/103; PS17/104; PS17/105; PS17/106; PS17/107; PS17/108; PS17/109; PS17/110; PS17/111; PS17/112; PS17/113; PS17/114; PS17/115; PS17/116; PS17/117; PS17/118; PS17/119; PS17/120; PS17/121; PS17/122; PS17/123; PS17/124; PS17/125; PS17/126; PS17/127; PS17/128; PS17/129; PS17/130; PS17/131; PS17/132; PS17/134; PS17/135; PS17/136; PS17/137; PS17/138; PS17/139; PS17/140; PS17/141; PS17/142; PS17/143; PS17/144; PS17/145; PS17/146; PS17/147; PS17/148; PS17/149; PS17/151; PS17/152; PS17/153; PS17/161; PS17/162; PS17/163; PS17/164; PS17/165; PS17/166; PS17/167; PS17/168; PS17/169; PS17/170; PS17/171; PS17/172; PS17/173; PS17/174; PS17/175; PS17/176; PS17/177; PS17/178; PS17/179; PS17/180; PS17/181; PS17/182; PS17/183; PS17/184; PS17/185; PS17/186; PS17/187; PS17/188; PS17/189; PS17/190; PS17/191; PS17/192; PS17/193; PS17/194; PS17/195; PS17/196; PS17/197; PS17/198; PS17/199; PS17/200; PS17/201; PS17/202; PS17/203; PS17/204; PS17/205; PS17/206; PS17/207; PS17/208; PS17/209; PS17/210; PS17/211; PS17/212; PS17/213; PS17/214; PS17/215; PS17/216; PS17/217; PS17/218; PS17/219
    Type: Dataset
    Format: text/tab-separated-values, 1303 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-03-09
    Description: Increasing upwelling intensity and shoaling of the oxygen minimum zone (OMZ) is projected for Eastern Boundary Upwelling Systems (EBUSs) under ocean warming which may have severe consequences for mesopelagic food webs, trophic transfer, and fish production also in the Humboldt Current Upwelling System (HUS). To improve our mechanistic understanding, from February 23, 2017 until April 14, 2017 we performed a 50 days mesocosm experiment in the northern HUS (off Callao Bay, Peru) and monitored the zooplankton development prior to and following a simulated upwelling event through the addition of deeper water of two different OMZ-influenced subsurface waters to four of in total eight mesocosms. To elucidate plankton dynamics and trophic relationships, we followed the temporal development of the mesozooplankton community in relation to that of phytoplankton, analyzed the fatty acid composition and gut fluorescence of dominant copepods, and determined the stable isotope (SI) and elemental composition (C:N) of dominant zooplankton taxa. Zooplankton samples were collected from the mesocosms over the entire experiment duration using an Apstein net (17 cm diameter, 100 µm mesh) to determine abundance and taxonomic composition of the zooplankton community, and to analyze fatty acid composition, gut fluorescence and elemental composition of dominant zooplankton. Furthermore, abundance and biomass of zooplankton groups was estimated from scanned ZooScan images.
    Keywords: Abundance; Biomass; Climate - Biogeochemistry Interactions in the Tropical Ocean; Coastal Upwelling System in a Changing Ocean; CUSCO; Gut fluorescence; Humboldt Current System; KOSMOS_2017; KOSMOS_2017_Peru; KOSMOS Peru; Lipid; MESO; mesocosm experiment; Mesocosm experiment; Oxygen Minimun zone; SFB754; Stable isotopes; Zooplankton
    Type: Dataset
    Format: application/zip, 5 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-03-09
    Keywords: ANT-XXIX/1; calanoid copepods; Life stage; MSN; Multiple opening/closing net; Number of specimens; Polarstern; Prosome, length; Prosome length, standard deviation; PS81; PS81/015-2; PS81/016-4; South Atlantic Ocean; Species; subtropical area; Zooplankton
    Type: Dataset
    Format: text/tab-separated-values, 1071 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-03-09
    Description: Biomass of zooplankton taxa in µg DM per liter as determined by ZooScan, using published area to dry weight relationships (Lehette & Hernandez-Leon 2009). Each data point is one sampling day (date) in one mesocosm (MK). For details on experimental treatments and sampling, refer to Bach et al. 2021 (https://doi.org/10.5194/bg-17-4831-2020) and Ayon et al. 2022 (https://doi.org/10.5194/bg-2022-157). Raw images are stored in https://ecotaxa.obs-vlfr.fr/prj/3784. All taxonomic categories are self-expanatory.
    Keywords: Abundance; Acartia spp., biomass, dry mass; Biomass; Bivalvia, biomass, dry mass; Branchiostoma spp., biomass, dry mass; Calanoida, biomass, dry mass; Ceratium spp., biomass, dry mass; Climate - Biogeochemistry Interactions in the Tropical Ocean; Cnidaria, biomass, dry mass; Coastal Upwelling System in a Changing Ocean; Copepoda, biomass, dry mass; Copepoda, nauplii, biomass, dry mass; Corycaeidae, biomass, dry mass; Crustacea, larvae, biomass, dry mass; CUSCO; Cyclopoida, biomass, dry mass; DATE/TIME; Diatoms, centrales, biomass, dry mass; Gastropoda, biomass, dry mass; Gut fluorescence; Harpacticoida, biomass, dry mass; Hemicyclops spp., biomass, dry mass; Humboldt Current System; KOSMOS_2017; KOSMOS_2017_Peru; KOSMOS Peru; Lipid; MESO; mesocosm experiment; Mesocosm experiment; Mesocosm label; Noctilucales, biomass, dry mass; Oncaeidae, biomass, dry mass; Oxygen Minimun zone; Paracalanus spp., biomass, dry mass; Polychaeta, biomass, dry mass; Sample code/label; Sample volume; SFB754; Spionidae, biomass, dry mass; Stable isotopes; Tintinnida, biomass, dry mass; Zooplankton; Zooplankton, biomass, dry mass
    Type: Dataset
    Format: text/tab-separated-values, 2430 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-03-09
    Description: Zooplankton species/groups abundance table per mesocosm and sampling day. Abundances are given as individual per m-3 and individuals per liter.
    Keywords: Abundance; Abundance per volume; Biomass; Class; Climate - Biogeochemistry Interactions in the Tropical Ocean; Coastal Upwelling System in a Changing Ocean; CUSCO; DATE/TIME; Day of experiment; Gut fluorescence; Humboldt Current System; KOSMOS_2017; KOSMOS_2017_Peru; KOSMOS Peru; Life stage; Lipid; MESO; mesocosm experiment; Mesocosm experiment; Mesocosm label; Order; Oxygen Minimun zone; SFB754; Species; Stable isotopes; Treatment; Zooplankton
    Type: Dataset
    Format: text/tab-separated-values, 15477 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-03-09
    Keywords: Acartia spp., c1-c3; Acartia spp., c4-c5; Acartia spp., female; Acartia spp., male; Aetidaeidae, c1-c3; Aetidaeidae, c4-c5; Aetidaeidae, female; Aetidaeidae, male; Aetidaeus arcuatus, c1-c3; Aetidaeus arcuatus, c4-c5; Aetidaeus arcuatus, female; Aetidaeus arcuatus, male; Aetidaeus armatus, c1-c3; Aetidaeus armatus, c4-c5; Aetidaeus armatus, female; Aetidaeus armatus, male; Aetidaeus australis, c1-c3; Aetidaeus australis, c4-c5; Aetidaeus australis, female; Aetidaeus australis, male; Aetidaeus giesbrechti, c1-c3; Aetidaeus giesbrechti, c4-c5; Aetidaeus giesbrechti, female; Aetidaeus giesbrechti, male; Aetidaeus spp., c1-c3; Aetidaeus spp., c4-c5; Aetidaeus spp., female; Aetidaeus spp., male; Aetideopsis carinata, c1-c3; Aetideopsis carinata, c4-c5; Aetideopsis carinata, female; Aetideopsis carinata, male; Aetideopsis spp., c1-c3; Aetideopsis spp., c4-c5; Aetideopsis spp., female; Aetideopsis spp., male; Amallothrix spp., c1-c3; Amallothrix spp., c4-c5; Amallothrix spp., female; Amallothrix spp., male; ANT-XXIX/1; Augaptilidae, c1-c3; Augaptilidae, c4-c5; Augaptilidae, female; Augaptilidae, male; Augaptilus anceps, c1-c3; Augaptilus anceps, c4-c5; Augaptilus anceps, female; Augaptilus anceps, male; Augaptilus longicaudatus, c1-c3; Augaptilus longicaudatus, c4-c5; Augaptilus longicaudatus, female; Augaptilus longicaudatus, male; Augaptilus megalurus, c1-c3; Augaptilus megalurus, c4-c5; Augaptilus megalurus, female; Augaptilus megalurus, male; Augaptilus spinifrons, c1-c3; Augaptilus spinifrons, c4-c5; Augaptilus spinifrons, female; Augaptilus spinifrons, male; Augaptilus spp., c1-c3; Augaptilus spp., c4-c5; Augaptilus spp., female; Augaptilus spp., male; Calanidae, c1-c3; Calanidae, c4-c5; Calanidae, female; Calanidae, male; Calanoides natalis, c1-c3; Calanoides natalis, c4-c5; Calanoides natalis, female; Calanoides natalis, male; Calocalanus spp., c1-c3; Calocalanus spp., c4-c5; Calocalanus spp., female; Calocalanus spp., male; Candacia bipinnata, c1-c3; Candacia bipinnata, c4-c5; Candacia bipinnata, female; Candacia bipinnata, male; Candacia curta, c1-c3; Candacia curta, c4-c5; Candacia curta, female; Candacia curta, male; Candacia elongata, c1-c3; Candacia elongata, c4-c5; Candacia elongata, female; Candacia elongata, male; Candacia ethiopica, c1-c3; Candacia ethiopica, c4-c5; Candacia ethiopica, female; Candacia ethiopica, male; Candacia longimana, c1-c3; Candacia longimana, c4-c5; Candacia longimana, female; Candacia longimana, male; Candacia spp., c1-c3; Candacia spp., c4-c5; Candacia spp., female; Candacia spp., male; Centropages bradyi, c1-c3; Centropages bradyi, c4-c5; Centropages bradyi, female; Centropages bradyi, male; Cephalophanes spp., c1-c3; Cephalophanes spp., c4-c5; Cephalophanes spp., female; Cephalophanes spp., male; Clausocalanus spp., c1-c3; Clausocalanus spp., c4-c5; Clausocalanus spp., female; Clausocalanus spp., male; Comment; Copepoda; Ctenocalanus spp., c1-c3; Ctenocalanus spp., c4-c5; Ctenocalanus spp., female; Ctenocalanus spp., male; Delibus spp., c1-c3; Delibus spp., c4-c5; Delibus spp., female; Delibus spp., male; Depth, bottom/max; Depth, top/min; DEPTH, water; Disco spp., c1-c3; Disco spp., c4-c5; Disco spp., female; Disco spp., male; Euaugaptilus spp., c1-c3; Euaugaptilus spp., c4-c5; Euaugaptilus spp., female; Euaugaptilus spp., male; Eucalanus hyalinus, c1-c3; Eucalanus hyalinus, c4-c5; Eucalanus hyalinus, female; Eucalanus hyalinus, male; Euchaeta marina, c1-c3; Euchaeta marina, c4-c5; Euchaeta marina, female; Euchaeta marina, male; Euchaeta spp., c1-c3; Euchaeta spp., c4-c5; Euchaeta spp., female; Euchaeta spp., male; Euchaetidae, c1-c3; Euchaetidae, c4-c5; Euchaetidae, female; Euchaetidae, male; Euchirella pulchra, c1-c3; Euchirella pulchra, c4-c5; Euchirella pulchra, female; Euchirella pulchra, male; Euchirella splendes, c1-c3; Euchirella splendes, c4-c5; Euchirella splendes, female; Euchirella splendes, male; Euchirella spp., c1-c3; Euchirella spp., c4-c5; Euchirella spp., female; Euchirella spp., male; Event label; Farrania frigida, c1-c3; Farrania frigida, c4-c5; Farrania frigida, female; Farrania frigida, male; Gaetanus brevicornis, c1-c3; Gaetanus brevicornis, c4-c5; Gaetanus brevicornis, female; Gaetanus brevicornis, male; Gaetanus cf. pileatus, c1-c3; Gaetanus cf. pileatus, c4-c5; Gaetanus cf. pileatus, female; Gaetanus cf. pileatus, male; Gaetanus kruppii, c1-c3; Gaetanus kruppii, c4-c5; Gaetanus kruppii, female; Gaetanus kruppii, male; Gaetanus spp., c1-c3; Gaetanus spp., c4-c5; Gaetanus spp., female; Gaetanus spp., male; Haloptilus cf. longicirrus, c1-c3; Haloptilus cf. longicirrus, c4-c5; Haloptilus cf. longicirrus, female; Haloptilus cf. longicirrus, male; Haloptilus cf. oxycephalus, c1-c3; Haloptilus cf. oxycephalus, c4-c5; Haloptilus cf. oxycephalus, female; Haloptilus cf. oxycephalus, male; Haloptilus spp., c1-c3; Haloptilus spp., c4-c5; Haloptilus spp., female; Haloptilus spp., male; Heterorhabdidae, c1-c3; Heterorhabdidae, c4-c5; Heterorhabdidae, female; Heterorhabdidae, male; Heterorhabdus cf. lobatus, c1-c3; Heterorhabdus cf. lobatus, c4-c5; Heterorhabdus cf. lobatus, female; Heterorhabdus cf. lobatus, male; Heterorhabdus spp., c1-c3; Heterorhabdus spp., c4-c5; Heterorhabdus spp., female; Heterorhabdus spp., male; Lophothrix humilifrons, c1-c3; Lophothrix humilifrons, c4-c5; Lophothrix humilifrons, female; Lophothrix humilifrons, male; Lophothrix spp., c1-c3; Lophothrix spp., c4-c5; Lophothrix spp., female; Lophothrix spp., male; Lucicutia gaussae, c1-c3; Lucicutia gaussae, c4-c5; Lucicutia gaussae, female; Lucicutia gaussae, male; Lucicutia longicornis, c1-c3; Lucicutia longicornis, c4-c5; Lucicutia longicornis, female; Lucicutia longicornis, male; Lucicutia ovalis, c1-c3; Lucicutia ovalis, c4-c5; Lucicutia ovalis, female; Lucicutia ovalis, male; Lucicutia spp., c1-c3; Lucicutia spp., c4-c5; Lucicutia spp., female; Lucicutia spp., male; Mecynocera clausi, c1-c3; Mecynocera clausi, c4-c5; Mecynocera clausi, female; Mecynocera clausi, male; Megacalanus princeps, c1-c3; Megacalanus princeps, c4-c5; Megacalanus princeps, female; Megacalanus princeps, male; Mesocalanus tenuicornis, c1-c3; Mesocalanus tenuicornis, c4-c5; Mesocalanus tenuicornis, female; Mesocalanus tenuicornis, male; Metridia brevicauda, c1-c3; Metridia brevicauda, c4-c5; Metridia brevicauda, female; Metridia brevicauda, male; Metridia discreta, c1-c3; Metridia discreta, c4-c5; Metridia discreta, female; Metridia discreta, male; Metridia effusa, c1-c3; Metridia effusa, c4-c5; Metridia effusa, female; Metridia effusa, male; Metridia lucens, c1-c3; Metridia lucens, c4-c5; Metridia lucens, female; Metridia lucens, male; Metridia princeps, c1-c3; Metridia princeps, c4-c5; Metridia princeps, female; Metridia princeps, male; Metridia spp., c1-c3; Metridia spp., c4-c5; Metridia spp., female; Metridia spp., male; Metridia venusta, c1-c3; Metridia venusta, c4-c5; Metridia venusta, female; Metridia venusta, male; Metridinidae, c1-c3; Metridinidae, c4-c5; Metridinidae, female; Metridinidae, male; Microcalanus spp., c1-c3; Microcalanus spp., c4-c5; Microcalanus spp., female; Microcalanus spp., male; Mimocalanus spp., c1-c3; Mimocalanus spp., c4-c5; Mimocalanus spp., female; Mimocalanus spp., male; Monacilla spp., c1-c3; Monacilla spp., c4-c5; Monacilla spp., female; Monacilla spp., male; Monacilla typica, c1-c3; Monacilla typica, c4-c5; Monacilla typica, female; Monacilla typica, male; MSN; Multiple opening/closing net; Nannocalanus minor, c1-c3; Nannocalanus minor, c4-c5; Nannocalanus minor, female; Nannocalanus minor, male; Neocalanus gracilis, c1-c3; Neocalanus gracilis, c4-c5; Neocalanus gracilis, female; Neocalanus gracilis, male; Neocalanus robustior, c1-c3; Neocalanus robustior, c4-c5; Neocalanus robustior, female; Neocalanus robustior, male; Nullosetigera impar, c1-c3; Nullosetigera impar, c4-c5; Nullosetigera impar, female; Nullosetigera impar, male; Nullosetigera spp., c1-c3; Nullosetigera spp., c4-c5; Nullosetigera spp., female;
    Type: Dataset
    Format: text/tab-separated-values, 9342 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-03-09
    Description: Fatty acid composition data for the two dominant copepods in the mesocosms (Paracalanus sp. and Hemicyclops sp.).
    Keywords: Abundance; Biomass; Climate - Biogeochemistry Interactions in the Tropical Ocean; Coastal Upwelling System in a Changing Ocean; CUSCO; DATE/TIME; Day of experiment; Fatty acid of total lipids; Fatty alcohol of total lipids; Gut fluorescence; Humboldt Current System; KOSMOS_2017; KOSMOS_2017_Peru; KOSMOS Peru; Lipid; Lipids, total, per dry mass; MESO; mesocosm experiment; Mesocosm experiment; Mesocosm label; Oxygen Minimun zone; Phase; Polyunsaturated fatty acids of total lipids; Saturated fatty acids of total lipids; SFB754; Species; Stable isotopes; Treatment; Zooplankton
    Type: Dataset
    Format: text/tab-separated-values, 1431 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-03-09
    Description: Gut fluorescence and C/N ratio of Paracalanus sp. determined during two occassions during the mesocosm experiment (Sampling Day 21/22 and 34/35).
    Keywords: Abundance; Biomass; Carbon/Nitrogen ratio; Climate - Biogeochemistry Interactions in the Tropical Ocean; Coastal Upwelling System in a Changing Ocean; CUSCO; Day of experiment; Gut fluorescence; Gut fluorescence, dry mass; Humboldt Current System; KOSMOS_2017; KOSMOS_2017_Peru; KOSMOS Peru; Lipid; MESO; mesocosm experiment; Mesocosm experiment; Mesocosm label; Oxygen Minimun zone; SFB754; Species; Stable isotopes; Time in minutes; Time point, descriptive; Treatment; Zooplankton
    Type: Dataset
    Format: text/tab-separated-values, 1088 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-03-09
    Description: Zooplankton metabolic processes play an important role in carbon budgets and fluxes of pelagic ecosystems. Respiration rates of several copepod species were determined to reveal their energy requirements and assess their significance in the carbon cycle. Respiration rates were measured by optode respirometry and allometrically based on body dry mass (DM). For the on-board measurements, a 10-channel optode respirometer (PreSens Precision Sensing Oxy-10 Mini) was used and experiments were run in gas-tight glass bottles (13-14 ml) filled with filtered seawater to reduce bias by microbial respiration. In addition, respiration rates for all dominant copepod species during MSM80 including copepodite stages C4 to C6 were determined based on individual DM and respective ambient temperatures after Bode et al. (2018). For that, individual DM, if not available from frozen specimens, was determined from formalin/Steedman-preserved samples by weighing the dried samples on a microbalance. Losses in body DM due to formalin/Steedman preservation were considered after Schukat et al. (2021). Respiration rates were calculated separately for the copepod family Eucalanidae (a) as they are rather sluggish while all other copepods exhibited normal activity (b). (a) lnRTF = -2.180 + 0.787 ln(DM) + 0.131T and (b) lnRAC = -0.890 + 0.646 ln(DM) + 0.094T, where R (μl O2 ind-1 h-1) is the individual respiration rate for eucalanid (RTF) and active (RAC) copepods, DM represents dry mass in mg and T the average temperature (°C) of the sampling interval. Respiration rates of the medium- to larger-sized copepods (female prosome length (PL) of 1.2-6.0 mm) were compared to those of "small copepods" (all copepods with female PL 〈1.1 mm and young stages). Medium- to larger-sized species ingested on average 13-212 mg C m-2 d-1 in coastal regions while "small copepods" on average consumed 118-328 mg C m-2 d-1. The potential egestion varied on average from 5-64 mg C m-2 d-1 for medium to larger-sized copepods and 35-98 mg C m-2 d-1 for "small copepods". Data of energy demands, consumption and egestion rates of copepod species differing in size are essential to improve carbon budgets and food-web models in the Humboldt Current System.
    Keywords: Analytical method; calanoid copepods; carbon budgets; Coastal Upwelling System in a Changing Ocean; consumption rates; Copepoda, mass; CUSCO; CUSCO-1; Date/Time of event; Depth, bottom/max; Depth, top/min; Egestion rate of carbon per day per individual; Event label; Ingestion rate of carbon per day per individual; Latitude of event; Life stage; Longitude of event; Maria S. Merian; MSM80; MSM80_102-4; MSM80_10-4; MSM80_104-6; MSM80_13-4; MSM80_14-4; MSM80_15-5; MSM80_1-6; MSM80_16-4; MSM80_18-4; MSM80_20-4; MSM80_22-4; MSM80_25-4; MSM80_28-4; MSM80_30-4; MSM80_38-5; MSM80_40-5; MSM80_43-5; MSM80_45-5; MSM80_4-6; MSM80_46-6; MSM80_53-4; MSM80_56-5; MSM80_58-4; MSM80_60-4; MSM80_66-4; MSM80_67-4; MSM80_68-5; MSM80_70-3; MSM80_7-4; MSM80_74-4; MSM80_78-4; MSM80_80-6; MSM80_89-4; MSM80_90-4; MSM80_94-5; MSM80_95-4; MSM80_96-4; MSM80_99-6; MSN; Multiple opening/closing net; Respiration rate, carbon, per individual; Respiration rate, oxygen, per dry mass; Respiration rate, oxygen, per individual; Sample ID; Species; Station label; Temperature, technical; Upwelling
    Type: Dataset
    Format: text/tab-separated-values, 10108 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...